Program Self-Reference in Constructive Scott Subdomains

被引:0
|
作者
John Case
Samuel E. Moelius
机构
[1] University of Delaware,Department of Computer & Information Sciences
[2] IDA Center for Computing Sciences,undefined
来源
Theory of Computing Systems | 2012年 / 51卷
关键词
Numberings; Recursion theorems; Scott domains; Self-reference; Self-reproducing programs;
D O I
暂无
中图分类号
学科分类号
摘要
Intuitively, a recursion theorem asserts the existence of self-referential programs . Two well-known recursion theorems are Kleene’s Recursion Theorem (krt) and Rogers’ Fixpoint Recursion Theorem (fprt). Does one of these two theorems better capture the notion of program self-reference than the other? In the context of the partial computable functions over the natural numbers (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document}), fprt is strictly weaker than krt, in that fprt holds in any effective numbering of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document} in which krt holds, but not vice versa. It is shown that, in this context, the existence of self-reproducing programs (a.k.a. quines ) is assured by krt, but not by fprt. Most would surely agree that a self-reproducing program is self-referential. Thus, this result suggests that krt is better than fprt at capturing the notion of program self-reference in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {PC}$\end{document} .
引用
收藏
页码:22 / 49
页数:27
相关论文
共 50 条
  • [1] Program Self-Reference in Constructive Scott Subdomains
    Case, John
    Moelius, Samuel E., III
    THEORY OF COMPUTING SYSTEMS, 2012, 51 (01) : 22 - 49
  • [2] Program Self-reference in Constructive Scott Subdomains
    Case, John
    Moelius, Samuel E., III
    MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE, 2009, 5635 : 89 - 98
  • [3] Characterizing Programming Systems Allowing Program Self-Reference
    John Case
    Samuel E. Moelius
    Theory of Computing Systems, 2009, 45 : 756 - 772
  • [4] Properties complementary to program self-reference
    Case, John
    Moelius, Samuel E., III
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 253 - +
  • [5] Properties Complementary to Program Self-Reference
    Case, John
    Moelius, Samuel E., III
    FUNDAMENTA INFORMATICAE, 2011, 111 (03) : 281 - 311
  • [6] Characterizing Programming Systems Allowing Program Self-Reference
    Case, John
    Moelius, Samuel E., III
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (04) : 756 - 772
  • [7] Characterizing programming systems allowing program self-reference
    Case, John
    Moelius, Samuel E., III
    COMPUTATION AND LOGIC IN THE REAL WORLD, PROCEEDINGS, 2007, 4497 : 125 - +
  • [8] Memory and Self-Reference
    Fernandez, Jordi
    INTERNATIONAL JOURNAL OF PHILOSOPHICAL STUDIES, 2024, 32 (01) : 59 - 77
  • [9] Self-reference hologram
    Ma, Lin
    Wang, Yingzong
    INFORMATION OPTICS AND PHOTONICS TECHNOLOGIES II, 2008, 6837
  • [10] Validity, dialetheism and self-reference
    Pailos, Federico Matias
    SYNTHESE, 2020, 197 (02) : 773 - 792