Fourientations and the Tutte polynomial

被引:0
|
作者
Spencer Backman
Sam Hopkins
机构
[1] University of Bonn,Hausdorff Center for Mathematics
[2] Massachusetts Institute of Technology,undefined
关键词
Partial graph orientations; Tutte polynomial; Deletion–contraction; Hyperplane arrangements; Cycle–cocycle reversal system; Chip-firing; -parking functions; Abelian sandpile model; Riemann–Roch theory for graphs; Lawrence ideals; Zonotopal algebra; Reliability polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
A fourientation of a graph is a choice for each edge of the graph whether to orient that edge in either direction, leave it unoriented, or biorient it. Fixing a total order on the edges and a reference orientation of the graph, we investigate properties of cuts and cycles in fourientations which give trivariate generating functions that are generalized Tutte polynomial evaluations of the form (k+m)n-1(k+l)gTαk+βl+mk+m,γk+l+δmk+l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (k+m)^{n-1}(k+l)^gT\left( \frac{\alpha k + \beta l + m}{k+m},\; \frac{\gamma k + l + \delta m}{k+l}\right) \end{aligned}$$\end{document}for α,γ∈{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\gamma \in \{0,1,2\}$$\end{document} and β,δ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta , \delta \in \{0,1\}$$\end{document}. We introduce an intersection lattice of 64 cut–cycle fourientation classes enumerated by generalized Tutte polynomial evaluations of this form. We prove these enumerations using a single deletion–contraction argument and classify axiomatically the set of fourientation classes to which our deletion–contraction argument applies. This work unifies and extends earlier results for fourientations due to Gessel and Sagan (Electron J Combin 3(2):Research Paper 9, 1996), results for partial orientations due to Backman (Adv Appl Math, forthcoming, 2014. arXiv:1408.3962), and Hopkins and Perkinson (Trans Am Math Soc 368(1):709–725, 2016), as well as results for total orientations due to Stanley (Discrete Math 5:171–178, 1973; Higher combinatorics (Proceedings of NATO Advanced Study Institute, Berlin, 1976). NATO Advanced Study Institute series, series C: mathematical and physical sciences, vol 31, Reidel, Dordrecht, pp 51–62, 1977), Las Vergnas (Progress in graph theory (Proceedings, Waterloo silver jubilee conference 1982), Academic Press, New York, pp 367–380, 1984), Greene and Zaslavsky (Trans Am Math Soc 280(1):97–126, 1983), and Gioan (Eur J Combin 28(4):1351–1366, 2007), which were previously unified by Gioan (2007), Bernardi (Electron J Combin 15(1):Research Paper 109, 2008), and Las Vergnas (Tutte polynomial of a morphism of matroids 6. A multi-faceted counting formula for hyperplane regions and acyclic orientations, 2012. arXiv:1205.5424). We conclude by describing how these classes of fourientations relate to geometric, combinatorial, and algebraic objects including bigraphical arrangements, cycle–cocycle reversal systems, graphic Lawrence ideals, Riemann–Roch theory for graphs, zonotopal algebra, and the reliability polynomial.
引用
收藏
相关论文
共 50 条
  • [1] Fourientations and the Tutte polynomial
    Backman, Spencer
    Hopkins, Sam
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [2] The Tutte polynomial
    Welsh, D
    RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 210 - 228
  • [3] On the polymatroid Tutte polynomial
    Guan, Xiaxia
    Yang, Weiling
    Jin, Xian'an
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 201
  • [4] Inapproximability of the Tutte polynomial
    Goldberg, Leslie Ann
    Jerrum, Mark
    INFORMATION AND COMPUTATION, 2008, 206 (07) : 908 - 929
  • [5] Inapproximability of the Tutte Polynomial
    Goldberg, Leslie Ann
    Jerrum, Mark
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 459 - 468
  • [6] On coefficients of the Tutte polynomial
    Leo, JW
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 121 - 135
  • [7] A categorification for the Tutte polynomial
    Jasso-Hernandez, Edna F.
    Rong, Yongwu
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 2031 - 2049
  • [8] Ehrhart polynomial and arithmetic Tutte polynomial
    D'Adderio, Michele
    Moci, Luca
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (07) : 1479 - 1483
  • [9] A Tutte Polynomial for Maps
    Goodall, Andrew
    Krajewski, Thomas
    Regts, Guus
    Vena, Lluis
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (06): : 913 - 945
  • [10] Permutation Tutte polynomial
    Beke, Csongor
    Csaji, Gergely Kal
    Csikvari, Peter
    Pituk, Sara
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120