A Normality Criterion Corresponding to the Defect Relations

被引:1
作者
Andreas Schweizer
机构
[1] Korea Advanced Institute of Science and Technology (KAIST),Department of Mathematics
来源
Computational Methods and Function Theory | 2017年 / 17卷
关键词
Normal family; Shared value; Shared set; Partial sharing; Zalcman lemma; Defect relations; Primary 30D45; Secondary 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{{F}}$$\end{document} be a family of meromorphic functions on a domain D. We present a quite general sufficient condition for F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{{F}}$$\end{document} to be a normal family. This criterion contains many known results as special cases. The overall idea is that certain comparatively weak conditions on F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{{F}}$$\end{document} by local arguments lead to somewhat stronger conditions, which in turn lead to even stronger conditions on the limit function g in the famous Zalcman Lemma. Ultimately, the defect relations for g force normality of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{{F}}$$\end{document}.
引用
收藏
页码:591 / 601
页数:10
相关论文
共 25 条
[1]  
Chang J(2011)Shared values, Picard values and normality Tohoku Math. J. 63 149-162
[2]  
Wang Y(2008)Meromorphic functions that share a set with their derivatives J. Math. Anal. Appl. 338 1020-1028
[3]  
Chang J(2010)Shared sets and normal families of meromorphic functions Rocky Mt. J. Math. 40 1473-1479
[4]  
Zalcman L(1964)On the zeros of J. Anal. Math. 12 243-255
[5]  
Chen J-F(2007) where Acta. Math. Sin. 50 409-412
[6]  
Edrei A(2011) and Arch. Math. (Basel) 97 259-260
[7]  
Fuchs WHJ(2009) are entire functions Ann. Polon. Math. 95 67-75
[8]  
Liu XJ(2000)Shared values and normal families (Chinese with English Abstract) Ark. Mat. 38 171-182
[9]  
Pang XC(2011)Corrigendum to “A note on meromorphic functions that share a set with their derivatives” Isr. J. Math. 184 403-412
[10]  
Lü F(2005)Uniqueness theorems and normal families of entire functions and their derivatives J. Math. Anal. Appl. 305 743-751