On positive strictly singular operators and domination

被引:0
作者
Julio Flores
Francisco L. Hernández
机构
[1] Universidad Rey Juan Carlos,Area de Física y Matemáticas Aplicadas. Escet
[2] Universidad Complutense,Departamento de Análisis Matemático. Facultad de Matemáticas
来源
Positivity | 2003年 / 7卷
关键词
Fourier Analysis; Operator Theory; Potential Theory; Positive Operator; Banach Lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We study the domination problem by positive strictly singular % operators between Banach lattices. Precisely we show that if E and %F are two Banach lattices such that the norms on E' and F are %order continuous and E satisfies the subsequence splitting property, %and %0≤S≤ T : E → F are two positive operators, then T strictly %singular implies S strictly singular. The special case of %endomorphisms is also considered. Applications to the class of %strictly co-singular (or Pelczynski) operators are given too.
引用
收藏
页码:73 / 80
页数:7
相关论文
共 20 条
  • [1] Abramovich Y.A.(1972)Weakly compact sets in topological K-spaces Teor. Funkcii Funkional. Anal. i Prilozen 15 27-35
  • [2] Dodds P.G.(1979)Compact operators in Banach lattices Israel J. of Math 34 287-320
  • [3] Fremlin D.H.(1981)On the structure of nonweakly compact operators on Banach lattices Math. Ann 257 317-334
  • [4] Figiel T. G. N.(2001)Domination by positive disjointly strictly singular operators Proc. Amer. Math. Soc. 129 1979-1986
  • [5] Johnson W.B.(1996)Disjointly strictly singular operators and interpolation Proc. Royal Soc. of Edinburgh 126A 1011-1026
  • [6] Flores J.(1990)Disjointly Strictly-Singular Operators in Banach Lattices Proc. 18 Winter School on Abstract Analysis (Srni). Acta Univ. Carolinae-Mathematica et Physica 31 35-40
  • [7] Hernández F.L.(1989)On Strictly Singular and Strictly Cosingular Operators Israel J. of Math 68 27-55
  • [8] García del Amo A. H. F.(1985)FrLa propriété de Dunford-Pettis dans Illinois Journal of Mathematics 29 382-400
  • [9] Ruiz C.(1965) et Bull. Acad. Pol. Sci. XIII 31-41
  • [10] Hernández F.L.(1983)1 Israel J. of Math 44 317-321