Perfect sequence covering arrays

被引:0
作者
Raphael Yuster
机构
[1] University of Haifa,Department of Mathematics
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Covering array; Sequence covering array; Completely scrambling set of permutations; Directed t-design; 05B40; 05B30; 05B15; 05A05;
D O I
暂无
中图分类号
学科分类号
摘要
An (n, k) sequence covering array is a set of permutations of [n] such that each sequence of k distinct elements of [n] is a subsequence of at least one of the permutations. An (n, k) sequence covering array is perfect if there is a positive integer λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} such that each sequence of k distinct elements of [n] is a subsequence of precisely λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of the permutations. While relatively close upper and lower bounds for the minimum size of a sequence covering array are known, this is not the case for perfect sequence covering arrays. Here we present new nontrivial bounds for the latter. In particular, for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} we obtain a linear lower bound and an almost linear upper bound.
引用
收藏
页码:585 / 593
页数:8
相关论文
共 17 条
[1]  
Baker R(2001)The difference between consecutive primes II Proc. Lond. Math. Soc. 83 532-562
[2]  
Harman G(2013)Sequence covering arrays SIAM J. Discret. Math. 27 1844-1861
[3]  
Pintz J(1996)Scrambling permutations and entropy of hypergraphs Random Struct. Algorithms 8 97-104
[4]  
Chee Y(1966)A certain class of incidence matrices Proc. Am. Math. Soc. 17 1233-1237
[5]  
Colbourn C(1995)Containment problems in high-dimensional spaces Graphs Comb. 11 327-335
[6]  
Horsley D(1996)An extremal problem of Discret. Math. 159 279-283
[7]  
Zhou J(1999) permutations containing every permutation of every Des. Codes Cryptogr. 18 187-198
[8]  
Füredi Z(2003) elements Random Struct. Algorithms 22 435-439
[9]  
Gottlieb D(1972)Directed t-packings and directed t-Steiner systems Acta Math. Hung. 22 349-353
[10]  
Ishigami Y(2008)A note on scrambling permutations Discret. Math. 308 1350-1354