On iteration digraph and zero-divisor graph of the ring ℤn

被引:0
作者
Tengxia Ju
Meiyun Wu
机构
[1] Nantong University,Faculty of Science
来源
Czechoslovak Mathematical Journal | 2014年 / 64卷
关键词
iteration digraph; zero-divisor graph; tree; cycle; vertex-connectivity; 11A07; 05C20;
D O I
暂无
中图分类号
学科分类号
摘要
In the first part, we assign to each positive integer n a digraph Γ(n, 5), whose set of vertices consists of elements of the ring ℤn = {0, 1, …, n − 1} with the addition and the multiplication operations modulo n, and for which there is a directed edge from a to b if and only if a5 ≡ b (mod n). Associated with Γ(n, 5) are two disjoint subdigraphs: Γ1(n, 5) and Γ2(n, 5) whose union is Γ(n, 5). The vertices of Γ1(n, 5) are coprime to n, and the vertices of Γ2(n, 5) are not coprime to n. In this part, we study the structure of Γ(n, 5) in detail.
引用
收藏
页码:611 / 628
页数:17
相关论文
共 14 条
[1]  
Akbari S.(2004)On the zero-divisor graph of a commutative ring J. Algebra 274 847-855
[2]  
Mohammadian A.(1988)Coloring of commutative rings J. Algebra 116 208-226
[3]  
Beck I.(1910)Note on a new number theory function Amer. Math. Soc. Bull. (2) 16 232-238
[4]  
Carmichael R. D.(2008)Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring ℤ Inf. Process. Lett. 108 165-169
[5]  
Skowronek-Kaziów J.(2004)On a connection of number theory with graph theory Czech. Math. J. 54 465-485
[6]  
Somer L.(2006)Stucture of digraphs associated with quadratic congruences with composite moduli Discrete Math. 306 2174-2185
[7]  
Křížek M.(2011)The structure of digraphs associated with the congruence Czech. Math. J. 61 337-358
[8]  
Somer L.(2004) ≡ Discrete Math. 277 219-240
[9]  
Křížek M.(1998) (mod Fibonacci Q 36 229-239
[10]  
Somer L.(undefined)) undefined undefined undefined-undefined