On an adjoint initial-boundary value problem

被引:0
|
作者
V. K. Andreev
机构
[1] Russian Academy of Sciences,Institute for Computer Modeling, Siberian Branch
[2] Siberian Federal University,undefined
来源
Differential Equations | 2008年 / 44卷
关键词
Pressure Gradient; Schwarz Inequality; Common Interface; Linear Parabolic Equation; Plane Discontinuity;
D O I
暂无
中图分类号
学科分类号
摘要
We study an adjoint initial-boundary value problem for linear parabolic equations; which arises when modeling the unidirectional motion of two viscous fluids with a common interface under the action of a pressure gradient. Under some conditions on the pressure gradient, we obtain a priori estimates and show that the solution enters a stationary mode. For semibounded layers, we find the solution in closed form and indicate the case of a self-similar solution. We determine the volume flow rates in the layers.
引用
收藏
页码:1730 / 1736
页数:6
相关论文
共 50 条
  • [1] On an Adjoint Initial-Boundary Value Problem
    Andreev, V. K.
    DIFFERENTIAL EQUATIONS, 2008, 44 (12) : 1730 - 1736
  • [2] The Initial-Boundary Value Problem for the Boussinesq Equations
    郭柏灵
    袁光伟
    数学进展, 1994, (05)
  • [3] THE INITIAL-BOUNDARY VALUE PROBLEM IN GENERAL RELATIVITY
    Reula, Oscar
    Sarbach, Olivier
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (05): : 767 - 783
  • [4] An initial-boundary value problem for the Maxwell equations
    Yang, Piwen
    Yang, Shuo
    Li, Manli
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (12) : 3003 - 3023
  • [5] An initial-boundary value problem for thermoelastic plates
    Constanda, C
    Ruotsalainen, K
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING, 2002, : 63 - 68
  • [6] On the initial-boundary value problem for nonlinear Schrodinger equation
    Kaikina, EI
    Naumkin, PI
    Shishmarev, IA
    DOKLADY AKADEMII NAUK, 2000, 370 (01) : 31 - 33
  • [7] On the integration of an initial-boundary value problem for the Volterra lattice
    Khanmamedov, AK
    DIFFERENTIAL EQUATIONS, 2005, 41 (08) : 1192 - 1195
  • [8] A Fitted Scheme for a Caputo Initial-Boundary Value Problem
    Gracia, J. L.
    O'Riordan, E.
    Stynes, M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 583 - 609
  • [9] Initial-boundary value problem for stochastic transport equations
    Neves, Wladimir
    Olivera, Christian
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (03): : 674 - 701
  • [10] A Fitted Scheme for a Caputo Initial-Boundary Value Problem
    J. L. Gracia
    E. O’Riordan
    M. Stynes
    Journal of Scientific Computing, 2018, 76 : 583 - 609