Discontinuous Galerkin Methods for Acoustic Wave Propagation in Polygons

被引:0
作者
Fabian Müller
Dominik Schötzau
Christoph Schwab
机构
[1] ETH Zürich,Seminar for Applied Mathematics
[2] University of British Columbia,Mathematics Department
来源
Journal of Scientific Computing | 2018年 / 77卷
关键词
Linear wave equations; Polygonal domains; Corner singularities; Discontinuous Galerkin finite element methods; Mesh refinements; Optimal convergence rates; 65M20; 65M60; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze space semi-discretizations of linear, second-order wave equations by discontinuous Galerkin methods in polygonal domains where solutions exhibit singular behavior near corners. To resolve these singularities, we consider two families of locally refined meshes: graded meshes and bisection refinement meshes. We prove that for appropriately chosen refinement parameters, optimal asymptotic rates of convergence with respect to the total number of degrees of freedom are obtained, both in the energy norm errors and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^2$$\end{document}-norm errors. The theoretical convergence orders are confirmed in a series of numerical experiments which also indicate that analogous results hold for incompatible data which is not covered by the currently available regularity theory.
引用
收藏
页码:1909 / 1935
页数:26
相关论文
共 49 条
  • [11] Babuška I(1986)Discontinuous Galerkin finite element method for the wave equation Comput. Mech. 1 21-41
  • [12] Kellogg RB(2016)Optimal error estimates for the fully discrete interior penalty DG method for the wave equation SIAM J. Numer. Anal. 54 3167-3191
  • [13] Pitkäranta J(2014)The J. Sci. Comput. 61 424-453
  • [14] Băcuţă C(2004)-version of the finite element method. Part I: the basic approximation results Algebra i Analiz 16 56-98
  • [15] Nistor V(1967)Error analysis of a second-order locally implicit method for linear Maxwell’s equations Trudy Moskov. Mat. Obšč 16 209-292
  • [16] Zikatanov LT(2015)Variational space–time methods for the wave equation Nonlinear Anal. 125 457-467
  • [17] Băcuţă C(2006)On the asymptotic behavior of solutions of the Neumann problem for hyperbolic systems in domains with conical points Algebra i Analiz 18 158-233
  • [18] Li H(2015)Boundary value problems for elliptic equations in domains with conical or angular points J. Comput. Appl. Math. 283 163-181
  • [19] Nistor V(2016)The Dirichlet–Cauchy problem for nonlinear hyperbolic equations in a domain with edges Math. Methods Appl. Sci. 39 5027-5042
  • [20] Gaspoz FD(2017)On dynamic problems in the theory of elasticity in domains with edges SIAM J. Numer. Anal. 55 2490-2521