Discontinuous Galerkin Methods for Acoustic Wave Propagation in Polygons

被引:0
作者
Fabian Müller
Dominik Schötzau
Christoph Schwab
机构
[1] ETH Zürich,Seminar for Applied Mathematics
[2] University of British Columbia,Mathematics Department
来源
Journal of Scientific Computing | 2018年 / 77卷
关键词
Linear wave equations; Polygonal domains; Corner singularities; Discontinuous Galerkin finite element methods; Mesh refinements; Optimal convergence rates; 65M20; 65M60; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze space semi-discretizations of linear, second-order wave equations by discontinuous Galerkin methods in polygonal domains where solutions exhibit singular behavior near corners. To resolve these singularities, we consider two families of locally refined meshes: graded meshes and bisection refinement meshes. We prove that for appropriately chosen refinement parameters, optimal asymptotic rates of convergence with respect to the total number of degrees of freedom are obtained, both in the energy norm errors and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^2$$\end{document}-norm errors. The theoretical convergence orders are confirmed in a series of numerical experiments which also indicate that analogous results hold for incompatible data which is not covered by the currently available regularity theory.
引用
收藏
页码:1909 / 1935
页数:26
相关论文
共 49 条
  • [1] Adler J(2015)Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D Math. Comput. 84 2191-2220
  • [2] Nistor V(2002)Unified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749-1779
  • [3] Arnold D(1988)The SIAM J. Numer. Anal. 25 837-861
  • [4] Brezzi F(1988)- SIAM J. Math. Anal. 19 172-203
  • [5] Cockburn B(1979) version of the finite element method for domains with curved boundaries Numer. Math. 33 447-471
  • [6] Marini D(2005)Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order Numer. Math. 100 165-184
  • [7] Babuška I(2017)Direct and inverse error estimates for finite elements with mesh refinements Rev. Roum. Math. Pures Appl. 62 383-411
  • [8] Guo BQ(2009)Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps IMA J. Numer. Anal. 29 917-936
  • [9] Babuška I(2006)Differential operators on domains with conical points: precise uniform regularity estimates SIAM J. Numer. Anal. 44 2408-2431
  • [10] Guo BQ(2009)Convergence rates for adaptive finite elements J. Sci. Comput. 40 257-272