Examination of the effect of B4C and GNP reinforcements on machinability in the machining of Al 6061 matrix B4C/GNP reinforced hybrid composites

被引:0
|
作者
Muharrem Pul
Selçuk Yağmur
机构
[1] Kırıkkale University,Kırıkkale Vocational School, Department of Electricity and Energy
[2] Gazi University,Faculty of Technology, Department of Manufacturing Engineering
关键词
Hybrid composite; Al 6061; B4C; GNP; Machinability; Tool wear;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, hybrid composite materials with Al 6061 matrix, boron carbide (B4C) and graphene nanoplate (GNP) being reinforced in different ratios were produced with the stir casting method. Afterward, machinability tests were carried out on the hybrid composites produced with the turning method. SNMG 12 04 08 NN LT 10 coded cutting tools were used in turning experiments. Experiments were realized at a fixed cutting depth of 1 mm, in dry machining conditions, using three different cutting speeds and three different feed rates. In the machinability tests, cutting forces and surface roughness values have been measured. At the same time, microscope images of the cutting tool tips were taken. When the data obtained as a result of the experiments were evaluated, it was observed that the cutting forces increased with the increase in the cutting speed, but the surface roughness values decreased to some extent. While the cutting forces increased with the increase in feed rate, there were no significant differences in roughness values and tool wear amounts. It was determined that the most effective parameter on cutting forces, surface roughness values and tool wear were constituted of the changes in B4C reinforcement ratio. It has been observed that the B4C reinforcement phase significantly increases tool wear. Besides, it was evaluated that GNP supplementation had a positive effect on machinability in some machining parameters and showed dry lubricant properties. It was concluded that the porosity and aggregation of the reinforcement element in the composite structure had a negative effect on the machinability properties. In addition, it was evaluated that it would be appropriate to use non-traditional manufacturing methods in addition to conventional machining processes in the processing of highly B4C reinforced composites.
引用
收藏
相关论文
共 50 条
  • [21] Tensile properties of 5052 Al matrix composites reinforced with B4C particles
    Lee, KB
    Sim, HS
    Cho, SY
    Kwon, H
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2001, 32 (08): : 2142 - 2147
  • [22] Tensile properties of 5052 Al Matrix composites reinforced with B4C particles
    Kon Bae Lee
    Ho Seop Sim
    Hoon Kwon
    Hoon Kwon
    Soo Yeon Cho
    Metallurgical and Materials Transactions A, 2001, 32 : 2142 - 2147
  • [23] Effect of B4C particle reinforcement on tensile properties of Al7075/B4C composites
    Krishnamoorthi, K.
    Arun, A. P.
    Muralidaran, V. Manivel
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 692 - 695
  • [24] Investigation of Microstructure and Machinability of the B4C/BN Composites
    Jiang, Tao
    Jin, Zhihao
    Yang, Jianfeng
    Qiao, Guanjun
    ECO-MATERIALS PROCESSING AND DESIGN X, 2009, 620-622 : 489 - +
  • [25] Effect of B4C particle size on the mechanical properties of B4C reinforced aluminum matrix layered composite
    Xu, Guangye
    Yu, Yingshui
    Zhang, Yubo
    Li, Tingju
    Wang, Tongmin
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2019, 26 (01) : 53 - 61
  • [26] Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites
    Liu R.
    Wang W.
    Zhao W.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2021, 38 (10): : 3394 - 3401
  • [27] Microstructural Evolution & Mechanical Properties of ZrO2/GNP and B4C/GNP reinforced AA6061 Friction Stir Processed Surface Composites-A Comparative study
    Ammal, M. Avadi
    Sudha, J.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2023, 237 (08) : 1149 - 1160
  • [28] Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites
    Li, Y. Z.
    Wang, Q. Z.
    Wang, W. G.
    Xiao, B. L.
    Ma, Z. Y.
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 154 : 107 - 117
  • [29] Microstructure and enhanced mechanical properties of hybrid-sized B4C particle-reinforced 6061Al matrix composites
    Gao, Minqiang
    Chen, Zongning
    Li, Linwei
    Guo, Enyu
    Kang, Huijun
    Xu, Yanjin
    Wang, Tongmin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [30] EFFECT OF B4C ON MECHANICAL PROPERTIES AND TRIBOLOGICAL BEHAVIOUR OF AA 6061-B4C COMPOSITES
    Baradeswaran, A.
    Perumal, A. Elaya
    Davim, J. P.
    JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2013, 19 (02): : 230 - 239