Regular bi-interpretability of Chevalley groups over local rings

被引:0
作者
Elena Bunina
机构
[1] Bar-Ilan University,Department of Mathematics, Faculty of Exact Sciences
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Chevalley groups; Local rings; Regular bi-interpretability; Elementary definability; 03C60; 20G35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if G(R)=Gπ(Φ,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(R)=G_\pi (\Phi ,R)$$\end{document}(E(R)=Eπ(Φ,R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E(R)=E_{\pi }(\Phi , R))$$\end{document} is an (elementary) Chevalley group of rank >1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$> 1$$\end{document}, R is a local ring (with 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document} for the root systems A2,Bl,Cl,F4,G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf{A}}}_2, {{\textbf{B}}}_l, {{\textbf{C}}}_l, {{\textbf{F}}}_4, {{\textbf{G}}}_2$$\end{document} and with 13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3}$$\end{document} for G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf{G}}}_{2})$$\end{document}, then the group G(R) (or (E(R)) is regularly bi-interpretable with the ring R. As a consequence of this theorem, we show that the class of all Chevalley groups over local rings (with the listed restrictions) is elementarily definable, i.e., if for an arbitrary group H we have H≡Gπ(Φ,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\equiv G_\pi (\Phi , R)$$\end{document}, then there exists a ring R′≡R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R'\equiv R$$\end{document} such that H≅Gπ(Φ,R′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\cong G_\pi (\Phi ,R')$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Abe E(1969)Chevalley groups over local rings Tohoku Math. J. 21 474-494
  • [2] Abe E(1976)On normal subgroups of Chevalley groups over commutative rings Tohoku Math. J. 28 185-198
  • [3] Suzuki K(2020)The logical complexity of finitely generated commutative rings Int. Math. Res. Not. IMRN 2020 112-166
  • [4] Aschenbrenner M(2019)First order rigidity of non-uniform higher rank arithmetic groups Invent. Math. 217 219-240
  • [5] Khélif A(2014)Elementary equivalence of linear groups over rings with a finite number of central idempotents and over Boolean rings J. Math. Sci. 201 438-445
  • [6] Naziazeno E(1998)Elementary equivalence of unitary linear groups over rings and skew fields Russian Math. Surv. 53 374-376
  • [7] Scanlon T(2008)Elementary equivalence of Chevalley groups over fields J. Math. Sci. 152 155-190
  • [8] Avni N(2010)Elementary equivalence of Chevalley groups over local rings Sb. Math. 201 321-337
  • [9] Lubotzky A(2012)Automorphisms of Chevalley groups of different types over commutative rings J. Algebra 355 154-170
  • [10] Meiri C(2019)Isomorphisms and elementary equivalence of Chevalley groups over commutative rings Sb. Math. 210 1067-1091