On the semigroup of order-preserving partial isometries of a finite chain with restricted range

被引:0
|
作者
Worachead Sommanee
Jintana Sanwong
机构
[1] Chiang Mai Rajabhat University,Department of Mathematics and Statistics, Faculty of Science and Technology
[2] Chiang Mai University,Department of Mathematics, Faculty of Science
来源
Semigroup Forum | 2022年 / 104卷
关键词
Partial isometries; Order-preserving; Green’s relations; Rank; Injective partial transformations; 20M20;
D O I
暂无
中图分类号
学科分类号
摘要
Let In\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_n$$\end{document} be the symmetric inverse semigroup on Xn={1,2,⋯,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n = \{1,2,\dots ,n\}$$\end{document}, and let ODPn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\!D\!P_n$$\end{document} be the subsemigroup of In\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_n$$\end{document} consisting of all order-preserving partial isometries of Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}. Let Y={1,2,⋯,r}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y = \{1,2,\dots ,r\}$$\end{document} be a non-empty subset of Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}. Define ODPIn,r={α∈ODPn:imα⊆Y}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} O\!D\!P\!I_{n,r} = \{\alpha \in O\!D\!P_n : \mathrm {im}\,\alpha \subseteq Y\}. \end{aligned}$$\end{document}In this paper, we give a necessary and sufficient condition for ODPIn,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\!D\!P\!I_{n,r}$$\end{document} to be an inverse semigroup and characterize its Green relations. Moreover, the cardinality and the rank of ODPIn,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\!D\!P\!I_{n,r}$$\end{document} are investigated.
引用
收藏
页码:166 / 179
页数:13
相关论文
共 50 条
  • [1] On the semigroup of order-preserving partial isometries of a finite chain with restricted range
    Sommanee, Worachead
    Sanwong, Jintana
    SEMIGROUP FORUM, 2022, 104 (01) : 166 - 179
  • [2] Publisher Correction to: On the semigroup of order-preserving partial isometries of a finite chain with restricted range
    Worachead Sommanee
    Jintana Sanwong
    Semigroup Forum, 2022, 104 : 516 - 516
  • [3] On the semigroup of order-preserving partial isometries of a finite chain with restricted range (vol 104, pg 166, 2022)
    Sommanee, Worachead
    Sanwong, Jintana
    SEMIGROUP FORUM, 2022, 104 (02) : 516 - 516
  • [4] On the semigroup of finite order-preserving partial injective contraction mappings
    Al-Kharousi, F.
    Garba, G. U.
    Ibrahim, M. J.
    Imam, A. T.
    Umar, A.
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [5] ON THE SEMIGROUP OF PARTIAL ISOMETRIES OF A FINITE CHAIN
    Al-Kharousi, F.
    Kehinde, R.
    Umar, A.
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 639 - 647
  • [6] A presentation for the semigroup of order-preserving full contraction mappings of a finite chain
    Toker, Kemal
    Ayik, Hayrullah
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (03) : 1257 - 1264
  • [7] The semigroups of order-preserving transformations with restricted range
    Zhao, Ping
    Hu, Huabi
    SEMIGROUP FORUM, 2023, 106 (02) : 516 - 525
  • [8] The semigroups of order-preserving transformations with restricted range
    Ping Zhao
    Huabi Hu
    Semigroup Forum, 2023, 106 : 516 - 525
  • [9] The Rank of the Semigroup of All Order-Preserving Transformations on a Finite Fence
    Fernandes, Vitor H.
    Koppitz, Joerg
    Musunthia, Tiwadee
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2191 - 2211
  • [10] The Rank of the Semigroup of All Order-Preserving Transformations on a Finite Fence
    Vítor H. Fernandes
    Jörg Koppitz
    Tiwadee Musunthia
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2191 - 2211