The existence of best proximity points for multivalued non-self-mappings

被引:0
作者
A. Abkar
M. Gabeleh
机构
[1] Imam Khomeini International University,Department of Mathematics
[2] Ayatollah Boroujerdi University,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas | 2013年 / 107卷
关键词
Contraction mapping; Nonexpansive mapping; Best proximity point; Fixed point; 47H10; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
Let A, B be nonempty subsets of a metric space (X, d) and T : A → 2B be a multivalued non-self-mapping. The purpose of this paper is to establish some theorems on the existence of a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x^*\in A}$$\end{document} , called best proximity point, which satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm inf}\{d(x^*,y):y\in Tx^*\}=dist(A,B).}$$\end{document} This will be done for contraction multivalued non-self-mappings in metric spaces, as well as for nonexpansive multivalued non-self-mappings in Banach spaces having appropriate geometric property.
引用
收藏
页码:319 / 325
页数:6
相关论文
共 28 条
[1]  
Abkar A.(2011)Best proximity points for asymptotic cyclic contraction mappings Nonlinear Anal. 74 7261-7268
[2]  
Gabeleh M.(2012)Global optimal solutions of noncyclic mappings in metric spaces J. Optim. Theory Appl. 153 298-305
[3]  
Abkar A.(2009)Convergence and existence results for best proximity points Nonlinear Anal. 70 3665-3671
[4]  
Gabeleh M.(2011)Best proximity points of cyclic Topol. Methods Nonlinear Anal. 37 193-202
[5]  
Al-Thagafi M.A.(2008) -contractions in ordered metric spaces Nonlinear Anal. 69 3790-3794
[6]  
Shahzad N.(2008)Best proximity points for cyclic Meir–Keeler contractions Proc. Amer. Math. Soc. 136 1987-1996
[7]  
Derafshpour M.(1969)A new approach to relatively nonexpansive mappings Math. Z 122 234-240
[8]  
Rezapour S.(1969)Extensions of two fixed point theorems of F. E. Browder Pac. J. Math. 30 475-488
[9]  
Shahzad N.(2011)Multivalued contraction mappinsg Nonlinear Anal. 74 4804-4808
[10]  
Di Bari C.(2009)A best proximity point theorem for weakly contractive non-self-mappings Nonlinear Anal. 71 2918-2926