Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities

被引:0
作者
Jun Yang
Hongwei Liu
Guaiwei Li
机构
[1] Xidian University,School of Mathematics and Statistics
[2] Xianyang Normal University,School of Mathematics and Information Science
[3] Xizang Minzu University,undefined
来源
Numerical Algorithms | 2020年 / 84卷
关键词
Variational inequalities; Projection; Subgradient extragradient method; Monotone mapping; Convex set; 47J20; 90C25; 90C30; 90C52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new iterative algorithm for solving classical variational inequalities problem with Lipschitz continuous and monotone mapping in real Hilbert space. We modify the subgradient extragradient methods with a step size; an advantage of the algorithm is the computation of only one value of the mapping and one projection onto the admissible set per one iteration. The convergence of the algorithm is established without the knowledge of the Lipschitz constant of the mapping. Meanwhile, R-linear convergence rate is obtained under strong monotonicity assumption of the mapping. Also, we generalize the method with Bregman projection. Finally, some numerical experiments are presented to show the efficiency of the proposed algorithm.
引用
收藏
页码:389 / 405
页数:16
相关论文
共 49 条
  • [1] Fichera G(1963)Sul problema elastostatico di Signorini con ambigue condizioni al contorno Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 34 138-142
  • [2] Fichera G(1964)Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIII. Ser. 7 91-140
  • [3] Stampacchia G(1964)Forms bilineaires coercitives sur les ensembles convexes C. R. Acad. Sci. Paris 258 4413-4416
  • [4] Hartman P(1966)On some linear elliptic differential equations Acta Math. 271-310 115-756
  • [5] Stampacchia G(1976)The extragradient method for finding saddle points and other problem Ekonomika i Matematicheskie Metody 12 747-277
  • [6] Korpelevich GM(2004)Some developments in general variational inequalities Appl. Math. Comput. 152 199-335
  • [7] Noor MA(2011)The subgradient extragradient method for solving variational inequalities in Hilbert space J. Optim. Theory Appl. 148 318-277
  • [8] Censor Y(2014)An extragradient algorithm for monotone variational inequalities Cybern. Syst. Anal. 50 271-446
  • [9] Gibali A(2000)A modified forward-backward splitting method for maximal monotone mapping SIAM J. Control Optim. 38 431-776
  • [10] Reich S(1999)A new projection method for monotone variational inequalities SIAM J. Control Optim. 37 765-520