Two Partition Functions with Congruences Modulo 3,5,7, and 13

被引:0
作者
Chris Jennings-Shaffer
机构
[1] Oregon State University,Department of Mathematics
来源
Annals of Combinatorics | 2017年 / 21卷
关键词
number theory; partitions; vector partitions; congruences; Bailey pairs; 11P81; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce two new integer partition functions, both of which are the number of partition quadruples of n with certain size restrictions. We prove both functions satisfy Ramanujan-type congruences modulo 3, 5, 7, and 13 by use of generalized Lambert series identities and q-series techniques.
引用
收藏
页码:397 / 443
页数:46
相关论文
共 14 条
[1]  
Atkin A.O.L.(1954)Some properties of partitions Proc. London Math. Soc. 4 84-106
[2]  
Swinnerton-Dyer P.(2014)Some congruences for modulus 13 related to partition generating function Ramanujan J. 33 197-218
[3]  
Bilgici G.(2010)Automorphic properties of generating functions for generalized rank moments and Durfee symbols Int. Math. Res. Not. IMRN 2010 238-260
[4]  
Ekin A.B.(2005)Generalized Lambert series identities Proc. London Math. Soc. (3) 91 598-622
[5]  
Bringmann K.(2000)Some properties of partitions in terms of crank Trans. Amer. Math. Soc. 352 2145-2156
[6]  
Lovejoy J.(2014)Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I Proc. Lond. Math. Soc. (3) 109 382-422
[7]  
Osburn R.(1992)Relations between the rank and the crank modulo 9 J. London Math. Soc. (2) 45 222-231
[8]  
Chan S.H.(1994)On the rank and the crank modulo 4 and 8 Trans. Amer. Math. Soc. 341 449-465
[9]  
Ekin A.B.(undefined)undefined undefined undefined undefined-undefined
[10]  
Hickerson D.R.(undefined)undefined undefined undefined undefined-undefined