A fractional step method for 2D parabolic convection-diffusion singularly perturbed problems: uniform convergence and order reduction

被引:0
作者
C. Clavero
J. C. Jorge
机构
[1] University of Zaragoza,Department of Applied Mathematics and IUMA
[2] Public University of Navarra,Department of Computational and Mathematical Engineering
来源
Numerical Algorithms | 2017年 / 75卷
关键词
Convection-diffusion; Singularly perturbed problems; Fractional euler method; Piecewise uniform meshes; Uniform convergence; Order reduction; 65N05; 65N06; 65N10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we are concerned with the efficient resolution of two dimensional parabolic singularly perturbed problems of convection-diffusion type. The numerical method combines the fractional implicit Euler method to discretize in time on a uniform mesh and the classical upwind finite difference scheme, defined on a Shishkin mesh, to discretize in space. We consider general time-dependent Dirichlet boundary conditions, and we show that classical evaluations of the boundary conditions cause an order reduction in the consistency of the time integrator. An appropriate correction for the evaluations of the boundary data permits to remove such order reduction. Using this correction, we prove that the fully discrete scheme is uniformly convergent of first order in time and of almost first order in space. Some numerical experiments, which corroborate in practice the robustness and the efficiency of the proposed numerical algorithm, are shown; from them, we bring to light the influence in practice of the two options for the boundary data considered here, which is in agreement with the theoretical results.
引用
收藏
页码:809 / 826
页数:17
相关论文
共 31 条
[1]  
Alonso-Mallo I(2004)Spectral-fractional step Runge-Kutta discretizations for initial boundary value problems with time dependent boundary conditions Math. Comp. 73 1801-1825
[2]  
Cano B(2007)A high order uniformly convergent alternating direction scheme for time dependent reaction-diffusion singularly perturbed problems Num. Math. 107 1-25
[3]  
Jorge JC(2006)A uniformly convergent alternating direction HODIE finite difference scheme for 2D time dependent convection-diffusion problems IMA J. Numer. Anal. 26 155-172
[4]  
Bujanda B(2005)A parameter robust numerical method for a two dimensional reaction-diffusion problem Math. Comp. 74 1743-1758
[5]  
Clavero C(1998)A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems Appl. Num. Math. 27 211-231
[6]  
Gracia JL(2015)Another uniform convergence analysis technique of some numerical methods for parabolic singularly perturbed problem Comp. Math. Appl. 70 222-235
[7]  
Jorge JC(2016)Uniform convergence and order reduction of the fractional implicit Euler method to solve singularly perturbed 2D reaction-diffusion problems Appl. Math. Comp. 287–88 12-27
[8]  
Clavero C(2001)Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem J. Math. Anal. Appl. 261 604-632
[9]  
Gracia JL(2007)A technique to prove parameter-uniform convergence for a singularly perturbed convection-diffusion equation J. Comput. Appl. Math. 206 136-145
[10]  
Jorge JC(1992)Runge-Kutta methods for partial differential equations and fractional orders of convergence Math. Comp. 59 403-420