Unsupervised ensemble minority clustering

被引:1
作者
Edgar Gonzàlez
Jordi Turmo
机构
[1] Universitat Politècnica de Catalunya,TALP Research Center
[2] Google Inc.,undefined
来源
Machine Learning | 2015年 / 98卷
关键词
Clustering; Minority clustering; Ensemble clustering; Weak learning;
D O I
暂无
中图分类号
学科分类号
摘要
Cluster analysis lies at the core of most unsupervised learning tasks. However, the majority of clustering algorithms depend on the all-in assumption, in which all objects belong to some cluster, and perform poorly on minority clustering tasks, in which a small fraction of signal data stands against a majority of noise.
引用
收藏
页码:217 / 268
页数:51
相关论文
共 69 条
[51]  
Shawe-Taylor J.(undefined)undefined undefined undefined undefined-undefined
[52]  
Smola A. J.(undefined)undefined undefined undefined undefined-undefined
[53]  
Williamson R. C.(undefined)undefined undefined undefined undefined-undefined
[54]  
Schwämmle V.(undefined)undefined undefined undefined undefined-undefined
[55]  
Jensen O. N.(undefined)undefined undefined undefined undefined-undefined
[56]  
Schwartz G. E.(undefined)undefined undefined undefined undefined-undefined
[57]  
Spärck-Jones K.(undefined)undefined undefined undefined undefined-undefined
[58]  
Strehl A.(undefined)undefined undefined undefined undefined-undefined
[59]  
Ghosh J.(undefined)undefined undefined undefined undefined-undefined
[60]  
Tax D. M.(undefined)undefined undefined undefined undefined-undefined