Unsupervised ensemble minority clustering

被引:1
作者
Edgar Gonzàlez
Jordi Turmo
机构
[1] Universitat Politècnica de Catalunya,TALP Research Center
[2] Google Inc.,undefined
来源
Machine Learning | 2015年 / 98卷
关键词
Clustering; Minority clustering; Ensemble clustering; Weak learning;
D O I
暂无
中图分类号
学科分类号
摘要
Cluster analysis lies at the core of most unsupervised learning tasks. However, the majority of clustering algorithms depend on the all-in assumption, in which all objects belong to some cluster, and perform poorly on minority clustering tasks, in which a small fraction of signal data stands against a majority of noise.
引用
收藏
页码:217 / 268
页数:51
相关论文
共 69 条
[31]  
García S.(2005)Survey of clustering algorithms IEEE Transactions on Neural Networks 16 645-678
[32]  
Herrera F.(1965)Fuzzy sets Information and Control 8 338-353
[33]  
Girolami M.(2004)Empirical and theoretical comparisons of selected criterion functions for document clustering Machine Learning 55 311-331
[34]  
Guillemaud R.(undefined)undefined undefined undefined undefined-undefined
[35]  
Brady M.(undefined)undefined undefined undefined undefined-undefined
[36]  
Gupta G.(undefined)undefined undefined undefined undefined-undefined
[37]  
Liu A.(undefined)undefined undefined undefined undefined-undefined
[38]  
Ghosh J.(undefined)undefined undefined undefined undefined-undefined
[39]  
Hodge V.(undefined)undefined undefined undefined undefined-undefined
[40]  
Austin J.(undefined)undefined undefined undefined undefined-undefined