Unsupervised ensemble minority clustering

被引:1
作者
Edgar Gonzàlez
Jordi Turmo
机构
[1] Universitat Politècnica de Catalunya,TALP Research Center
[2] Google Inc.,undefined
来源
Machine Learning | 2015年 / 98卷
关键词
Clustering; Minority clustering; Ensemble clustering; Weak learning;
D O I
暂无
中图分类号
学科分类号
摘要
Cluster analysis lies at the core of most unsupervised learning tasks. However, the majority of clustering algorithms depend on the all-in assumption, in which all objects belong to some cluster, and perform poorly on minority clustering tasks, in which a small fraction of signal data stands against a majority of noise.
引用
收藏
页码:217 / 268
页数:51
相关论文
共 69 条
[1]  
Banerjee A.(2005)Clustering with Bregman divergences Journal of Machine Learning Research 6 1705-1749
[2]  
Merugu S.(1993)Model-based Gaussian and non-Gaussian clustering Biometrics 49 803-821
[3]  
Dhillon I. S.(2000)Assessing a mixture model for clustering with the integrated completed likelihood IEEE Transactions on Pattern Analysis and Machine Intelligence 22 719-725
[4]  
Ghosh J.(2003)Word sequence kernels Journal of Machine Learning Research 3 1059-1082
[5]  
Banfield J. D.(2009)Anomaly detection: a survey ACM Computing Surveys 41 15:1-58
[6]  
Raftery A. E.(1995)Mean shift, mode seeking, and clustering IEEE Transactions on Pattern Analysis and Machine Intelligence 17 790-799
[7]  
Biernacki C.(2001)On the algorithmic implementation of multiclass kernel-based vector machines Journal of Machine Learning Research 2 265-292
[8]  
Celeux G.(1991)Characterization and detection of noise in clustering Pattern Recognition Letters 12 657-664
[9]  
Govaert G.(2003)A study of parameter values for a Mahalanobis distance fuzzy classifier Fuzzy Sets and Systems 137 191-213
[10]  
Cancedda N.(2006)Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 1-30