Neural nonnegative matrix factorization for hierarchical multilayer topic modeling

被引:0
作者
Haddock, Jamie [1 ]
Will, Tyler [2 ]
Vendrow, Joshua [3 ]
Zhang, Runyu [4 ]
Molitor, Denali [5 ]
Needell, Deanna [6 ]
Gao, Mengdi [7 ]
Sadovnik, Eli [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Optimal Dynam, New York, NY 10001 USA
[3] MIT, Dept EECS, 50 Vassar St, Cambridge, MA 02140 USA
[4] Harvard Univ, Sch Engn & Appl Sci, 150 Western Ave, Cambridge, MA 02138 USA
[5] Google, Seattle, WA 98103 USA
[6] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[7] Schlumberger, Menlo Pk, CA 94025 USA
来源
SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS | 2024年 / 22卷 / 01期
关键词
Hierarchical topic models; Nonnegative matrix factorization; Backpropagation; ALGORITHMS;
D O I
10.1007/s43670-023-00077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] Using underapproximations for sparse nonnegative matrix factorization
    Gillis, Nicolas
    Glineur, Francois
    [J]. PATTERN RECOGNITION, 2010, 43 (04) : 1676 - 1687
  • [42] Convergence of a Fast Hierarchical Alternating Least Squares Algorithm for Nonnegative Matrix Factorization
    Hou, Liangshao
    Chu, Delin
    Liao, Li-Zhi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 77 - 89
  • [43] Fast Rank-2 Nonnegative Matrix Factorization for Hierarchical Document Clustering
    Kuang, Da
    Park, Haesun
    [J]. 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 739 - 747
  • [44] Nonnegative Matrix Factorization Using Nonnegative Polynomial Approximations
    Debals, Otto
    Van Barel, Marc
    De Lathauwer, Lieven
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (07) : 948 - 952
  • [45] Two-hierarchical nonnegative matrix factorization distinguishing the fluorescent targets from autofluorescence for fluorescence imaging
    Huang, Shaosen
    Zhao, Yong
    Qin, Binjie
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2015, 14
  • [46] Localized user-driven topic discovery via boosted ensemble of nonnegative matrix factorization
    Suh, Sangho
    Shin, Sungbok
    Lee, Joonseok
    Reddy, Chandan K.
    Choo, Jaegul
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 56 (03) : 503 - 531
  • [47] Continuous Semi-Supervised Nonnegative Matrix Factorization
    Lindstrom, Michael R. R.
    Ding, Xiaofu
    Liu, Feng
    Somayajula, Anand
    Needell, Deanna
    [J]. ALGORITHMS, 2023, 16 (04)
  • [48] Nonnegative matrix factorization with manifold structure for face recognition
    Chen, Wen-Sheng
    Wang, Chian
    Pan, Binbin
    Chen, Bo
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (02)
  • [49] Smoothed separable nonnegative matrix factorization
    Nadisic, Nicolas
    Gillis, Nicolas
    Kervazo, Christophe
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 174 - 204
  • [50] Explainable recommendations with nonnegative matrix factorization
    Zhang, Xiaoxia
    Zhou, Xianjun
    Chen, Lu
    Liu, Yanjun
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL3) : S3927 - S3955