Neural nonnegative matrix factorization for hierarchical multilayer topic modeling

被引:0
作者
Haddock, Jamie [1 ]
Will, Tyler [2 ]
Vendrow, Joshua [3 ]
Zhang, Runyu [4 ]
Molitor, Denali [5 ]
Needell, Deanna [6 ]
Gao, Mengdi [7 ]
Sadovnik, Eli [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Optimal Dynam, New York, NY 10001 USA
[3] MIT, Dept EECS, 50 Vassar St, Cambridge, MA 02140 USA
[4] Harvard Univ, Sch Engn & Appl Sci, 150 Western Ave, Cambridge, MA 02138 USA
[5] Google, Seattle, WA 98103 USA
[6] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[7] Schlumberger, Menlo Pk, CA 94025 USA
来源
SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS | 2024年 / 22卷 / 01期
关键词
Hierarchical topic models; Nonnegative matrix factorization; Backpropagation; ALGORITHMS;
D O I
10.1007/s43670-023-00077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] Compressed Nonnegative Matrix Factorization Is Fast and Accurate
    Tepper, Mariano
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (09) : 2269 - 2283
  • [32] The rise of nonnegative matrix factorization: Algorithms and applications
    Guo, Yi-Ting
    Li, Qin-Qin
    Liang, Chun-Sheng
    INFORMATION SYSTEMS, 2024, 123
  • [33] A Framework for Compressed Weighted Nonnegative Matrix Factorization
    Yahaya, Farouk
    Puigt, Matthieu
    Delmaire, Gilles
    Roussel, Gilles
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 4798 - 4811
  • [34] Nonnegative Matrix Factorization for Document Clustering: A Survey
    Hosseini-Asl, Ehsan
    Zurada, Jacek M.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 726 - 737
  • [35] Nonnegative Matrix Factorization Approach for Image Reconstruction
    Wang, Yueyang
    Shafai, Bahram
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 1639 - 1642
  • [36] Convex nonnegative matrix factorization with manifold regularization
    Hu, Wenjun
    Choi, Kup-Sze
    Wang, Peiliang
    Jiang, Yunliang
    Wang, Shitong
    NEURAL NETWORKS, 2015, 63 : 94 - 103
  • [37] Tight Semi-nonnegative Matrix Factorization
    Dreisigmeyer, David W.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (04) : 632 - 637
  • [38] A Progressive Hierarchical Alternating Least Squares Method for Symmetric Nonnegative Matrix Factorization
    Hou, Liangshao
    Chu, Delin
    Liao, Li-Zhi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5355 - 5369
  • [39] Factor-Bounded Nonnegative Matrix Factorization
    Liu, Kai
    Li, Xiangyu
    Zhu, Zhihui
    Brand, Lodewijk
    Wang, Hua
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (06)
  • [40] GENERALIZED INTERVAL VALUED NONNEGATIVE MATRIX FACTORIZATION
    Kohjima, Masahiro
    Matsubayashi, Tatsushi
    Toda, Hiroyuki
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3412 - 3416