Neural nonnegative matrix factorization for hierarchical multilayer topic modeling

被引:0
|
作者
Haddock, Jamie [1 ]
Will, Tyler [2 ]
Vendrow, Joshua [3 ]
Zhang, Runyu [4 ]
Molitor, Denali [5 ]
Needell, Deanna [6 ]
Gao, Mengdi [7 ]
Sadovnik, Eli [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Optimal Dynam, New York, NY 10001 USA
[3] MIT, Dept EECS, 50 Vassar St, Cambridge, MA 02140 USA
[4] Harvard Univ, Sch Engn & Appl Sci, 150 Western Ave, Cambridge, MA 02138 USA
[5] Google, Seattle, WA 98103 USA
[6] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[7] Schlumberger, Menlo Pk, CA 94025 USA
来源
SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS | 2024年 / 22卷 / 01期
关键词
Hierarchical topic models; Nonnegative matrix factorization; Backpropagation; ALGORITHMS;
D O I
10.1007/s43670-023-00077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization
    Shiga, Motoki
    Tatsumi, Kazuyoshi
    Muto, Shunsuke
    Tsuda, Koji
    Yamamoto, Yuta
    Mori, Toshiyuki
    Tanji, Takayoshi
    ULTRAMICROSCOPY, 2016, 170 : 43 - 59
  • [22] Topic Splitting: A Hierarchical Topic Model Based on Non-Negative Matrix Factorization
    Rui Liu
    Xingguang Wang
    Deqing Wang
    Yuan Zuo
    He Zhang
    Xianzhu Zheng
    Journal of Systems Science and Systems Engineering, 2018, 27 : 479 - 496
  • [23] Nonnegative matrix factorization of a correlation matrix
    Sonneveld, P.
    van Kan, J. J. I. M.
    Huang, X.
    Oosterlee, C. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 334 - 349
  • [24] NONNEGATIVE MATRIX FACTORIZATION WITH MATRIX EXPONENTIATION
    Lyu, Siwei
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2038 - 2041
  • [25] ON THE COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1364 - 1377
  • [26] WEIGHTED NONNEGATIVE MATRIX FACTORIZATION
    Kim, Yang-Deok
    Choi, Seungjin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1541 - 1544
  • [27] MINIMAX LOWER BOUNDS FOR NONNEGATIVE MATRIX FACTORIZATION
    Alsan, Mine
    Liu, Zhaoqiang
    Tan, Vincent Y. F.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 363 - 367
  • [28] A Framework for Compressed Weighted Nonnegative Matrix Factorization
    Yahaya, Farouk
    Puigt, Matthieu
    Delmaire, Gilles
    Roussel, Gilles
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 4798 - 4811
  • [29] The rise of nonnegative matrix factorization: Algorithms and applications
    Guo, Yi-Ting
    Li, Qin-Qin
    Liang, Chun-Sheng
    INFORMATION SYSTEMS, 2024, 123
  • [30] About Nonnegative Matrix Factorization: On the posrank Approximation
    de Almeida, Ana
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT II, 2011, 6594 : 295 - 304