Neural nonnegative matrix factorization for hierarchical multilayer topic modeling

被引:0
|
作者
Haddock, Jamie [1 ]
Will, Tyler [2 ]
Vendrow, Joshua [3 ]
Zhang, Runyu [4 ]
Molitor, Denali [5 ]
Needell, Deanna [6 ]
Gao, Mengdi [7 ]
Sadovnik, Eli [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Optimal Dynam, New York, NY 10001 USA
[3] MIT, Dept EECS, 50 Vassar St, Cambridge, MA 02140 USA
[4] Harvard Univ, Sch Engn & Appl Sci, 150 Western Ave, Cambridge, MA 02138 USA
[5] Google, Seattle, WA 98103 USA
[6] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[7] Schlumberger, Menlo Pk, CA 94025 USA
来源
SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS | 2024年 / 22卷 / 01期
关键词
Hierarchical topic models; Nonnegative matrix factorization; Backpropagation; ALGORITHMS;
D O I
10.1007/s43670-023-00077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] NEURAL NONNEGATIVE MATRIX FACTORIZATION FOR HIERARCHICAL MULTILAYER TOPIC MODELING
    Gao, M.
    Haddock, J.
    Molitor, D.
    Needell, D.
    Sadovnik, E.
    Will, T.
    Zhang, R.
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 6 - 10
  • [2] UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization
    Choo, Jaegul
    Lee, Changhyun
    Reddy, Chandan K.
    Park, Haesun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 1992 - 2001
  • [3] Recurrent neural network for approximate nonnegative matrix factorization
    Costantini, Giovanni
    Perfetti, Renzo
    Todisco, Massimiliano
    NEUROCOMPUTING, 2014, 138 : 238 - 247
  • [4] DC-NMF: nonnegative matrix factorization based on divide-and-conquer for fast clustering and topic modeling
    Du, Rundong
    Kuang, Da
    Drake, Barry
    Park, Haesun
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (04) : 777 - 798
  • [5] Lifelong Hierarchical Topic Modeling via Non-negative Matrix Factorization
    Lin, Zhicheng
    Yan, Jiaxing
    Lei, Zhiqi
    Rao, Yanghui
    WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 : 155 - 170
  • [6] Topic Splitting: A Hierarchical Topic Model Based on Non-Negative Matrix Factorization
    Liu, Rui
    Wang, Xingguang
    Wang, Deqing
    Zuo, Yuan
    Zhang, He
    Zheng, Xianzhu
    JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2018, 27 (04) : 479 - 496
  • [7] Multilayer nonnegative matrix factorization using projected gradient approaches
    Cichocki, Andrzej
    Zdunek, Rafal
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2007, 17 (06) : 431 - 446
  • [8] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510
  • [9] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278
  • [10] NONNEGATIVE UNIMODAL MATRIX FACTORIZATION
    Ang, Andersen Man Shun
    Gillis, Nicolas
    Vandaele, Arnaud
    De Sterck, Hans
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3270 - 3274