Complement of the generalized total graph of commutative rings

被引:0
作者
Tamizh Chelvam Thirugnanam
Balamurugan Mariappan
机构
[1] Manonmaniam Sundaranar University,Department of Mathematics
来源
The Journal of Analysis | 2019年 / 27卷
关键词
Commutative rings; Total graph; Complement; Domination; Gamma sets; 05C75; 05C25; 13A15; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and H a nonempty proper multiplicative prime subset of R. The generalized total graph of R is the simple undirected graph GTH(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GT_{H}(R)$$\end{document} with the vertex set R and two distinct vertices x and y are adjacent if and only if x+y∈H.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x + y \in H.$$\end{document} In this paper, we investigate several graph theoretical properties of the complement GTH(R)¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{GT_{H}(R)}.$$\end{document} In particular, we obtain a characterization for GTP(R)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{GT_{P}(R)}$$\end{document} to be claw-free or unicyclic or pancyclic. Also, we obtain the clique number and chromatic number of GTP(R)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{GT_P(R)}$$\end{document} and discuss the perfect, planar and outer planarity nature for GTP(R)¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{GT_{P}(R)}.$$\end{document} Further, we discuss various domination parameters for GTP(R)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{GT_{P}(R)}$$\end{document} where P is a prime ideal of R.
引用
收藏
页码:539 / 553
页数:14
相关论文
共 34 条
[1]  
Akbari S(2009)The total graph and regular graph of a commutative ring Journal of Pure and Applied Algebra 213 2224-2228
[2]  
Kiani D(2008)The total graph of a commutative ring Journal of Algebra 320 2706-2719
[3]  
Mohammadi F(2012)On the total graph of a commutative ring without the zero element Journal of Algebra and Applications 11 1250074-447
[4]  
Moradi S(2013)The generalized total graph of a commutative ring Journal of Algebra and Applications 12 1250212-2871
[5]  
Anderson DF(1999)The zero-divisor graph of a commutative ring Journal of Algebra 217 443-3835
[6]  
Badawi A(2010)Unit graphs associated with rings Communications in Algebra 38 2851-253
[7]  
Anderson DF(2013)On the total graph and its complement of a commutative ring Communications in Algebra 41 3820-7
[8]  
Badawi A(2012)On the associated graphs to a commutative ring Journal of Algebra and Applications 11 1250037-421
[9]  
Anderson DF(2012)A generalization of the unit and unitary Cayley graphs of a commutative ring Acta Mathematica Hungarica 137 242-354
[10]  
Badawi A(2011)A note on total graph of Journal of Discrete Mathematical Sciences and Cryptography 14 1-158