Isotope Effect of Hot Electrons Generated on Pt Nanoparticle Surfaces Under H2 and D2 Oxidation

被引:0
作者
Hyosun Lee
Ievgen I. Nedrygailov
Si Woo Lee
Jeong Young Park
机构
[1] Institute for Basic Science (IBS),Center for Nanomaterials and Chemical Reactions
[2] Korea Advanced Institute of Science and Technology (KAIST),Graduate School of EEWS
来源
Topics in Catalysis | 2018年 / 61卷
关键词
Hot electrons; Catalytic nanodiodes; Pt nanoparticles; TiO; Schottky diode; Isotope effect; Hydrogen oxidation;
D O I
暂无
中图分类号
学科分类号
摘要
Hot electrons are generated when an exothermic chemical reaction takes place on the surface of a metal catalyst. Detection of these electrons using a catalytic nanodiode based on a metal-semiconductor Schottky junction can shed light on the mechanisms for energy transfer between the reacting molecules and the catalyst. Here, we present a study on the isotope effect of hot electron generation during the catalytic water formation reaction on platinum nanoparticles. To elucidate the isotope effect of hot electrons and to distinguish the reaction steps responsible for the creation of hot electrons, we carried out H2 and D2 oxidation reactions. We also considered the dependence of hot electron flux across the nanodiode on the temperature and geometry of the catalyst. Based on these results, we conclude that the observed effect of hot electron creation is mainly associated with energy released during the surface reaction of adsorbed hydrogen atoms and hydroxyl radicals, i.e. H+OH→H2O,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{H}}+{\text{OH}} \to {{\text{H}}_2}{\text{O,}}$$\end{document} at high gas pressure.
引用
收藏
页码:915 / 922
页数:7
相关论文
共 153 条
[11]  
Wodtke AM(2009)undefined J Am Chem Soc 131 16589-16605
[12]  
Matsiev D(1927)undefined Ann Phys 389 457-484
[13]  
Auerbach DJ(2000)undefined Phys Rev Lett 84 2985-2988
[14]  
Wodtke AM(2013)undefined J Phys Chem Lett 4 3735-3740
[15]  
Hasselbrink E(1999)undefined Appl Phys Lett 74 4046-4048
[16]  
Park JY(2010)undefined Phys Rev B 81 205443-15638
[17]  
Kim SM(2013)undefined J Phys Chem C 117 15632-50
[18]  
Lee H(2012)undefined Chem Phys Lett 553 47-2802
[19]  
Nedrygailov II(2011)undefined Phys Status Solidi A 208 2796-2344
[20]  
Somorjai GA(2015)undefined Angew Chem Int Ed 54 2340-2392