Micropipe and dislocation density reduction in 6H-SiC and 4H-SiC structures grown by liquid phase epitaxy

被引:0
|
作者
S. V. Rendakova
I. P. Nikitina
A. S. Tregubova
V. A. Dmitriev
机构
[1] Crystal Growth Research Center,
[2] A.F. Ioffe Institute,undefined
[3] MSRCE,undefined
[4] Howard University,undefined
[5] TDI,undefined
[6] Inc.,undefined
来源
Journal of Electronic Materials | 1998年 / 27卷
关键词
Dislocations; liquid phase epitaxy; micropipes; silicon carbide;
D O I
暂无
中图分类号
学科分类号
摘要
We investigated silicon carbide (SiC) epitaxial layers grown by liquid phase epitaxy (LPE). The layers were grown on 6H-SiC and 4H-SiC well-oriented (0001) 35 mm diameter commercial wafers as well as on 6H-SiC Lely crystals. A few experiments were also done on off-axis 6H-SiC and 4H-SiC substrates. Layer thickness and growth rate ranged from 0.5 to 50 microns and 0.5 to 10 µm/h, respectively. Layers were investigated by x-ray diffraction, x-ray topography, and selective chemical etching in molten KOH. It was found that dislocation and micropipe density in LPE grown epitaxial layers were significantly reduced compared with the defect densities in the substrates.
引用
收藏
页码:292 / 295
页数:3
相关论文
共 50 条
  • [1] Micropipe and dislocation density reduction in 6H-SiC and 4H-SiC structures grown by liquid phase epitaxy
    Rendakova, SV
    Nikitina, IP
    Tregubova, AS
    Dmitriev, VA
    JOURNAL OF ELECTRONIC MATERIALS, 1998, 27 (04) : 292 - 295
  • [2] The formation of super-dislocation/micropipe complexes in 6H-SiC
    Giocondi, J
    Rohrer, GS
    Skowronski, M
    Balakrishna, V
    Augustine, G
    Hobgood, HM
    Hopkins, RH
    SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 : 371 - 374
  • [3] 4H-SiC layers grown by liquid phase epitaxy on 4H-SiC off-axis substrates
    Kuznetsov, N
    Morozov, A
    Bauman, D
    Ivantsov, V
    Sukhoveev, V
    Nikitina, I
    Zubrilov, A
    Rendakova, S
    Dimitriev, VA
    Hofman, D
    Masri, P
    SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 : 229 - 232
  • [4] High quality 6H- and 4H-SiC pn structures with stable electric breakdown grown by liquid phase epitaxy
    Rendakova, S
    Ivantsov, V
    Dmitriev, V
    SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 : 163 - 166
  • [5] Surface roughness studies on 4H-SiC layers grown by liquid phase epitaxy
    Kuznetsov, N
    Tsagaraki, K
    Bauman, D
    Morozov, A
    Nikitina, I
    Ivantsov, V
    Zekentes, K
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 80 (1-3): : 345 - 347
  • [6] PHONONS IN 3C-SIC, 4H-SIC, AND 6H-SIC
    NIENHAUS, H
    KAMPEN, TU
    MONCH, W
    SURFACE SCIENCE, 1995, 324 (01) : L328 - L332
  • [7] Liquid Phase Epitaxy of 4H-SiC Layers on on-axis PVT Grown Substrates
    Kusunoki, Kazuhiko
    Kamei, Kazuhito
    Yashiro, Nobuyoshi
    Hattori, Ryo
    SILICON CARBIDE AND RELATED MATERIALS 2008, 2009, 615-617 : 137 - 140
  • [8] 4H-SiC CVD epitaxial layers with improved structural quality grown on SiC wafers with reduced micropipe density
    Kalinina, EV
    Zubrilov, A
    Solov'ev, V
    Kuznetsov, NI
    Hallen, A
    Konstantinov, A
    Karlsson, S
    Rendakova, S
    Dmitriev, V
    SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 : 505 - 508
  • [9] PHOTOLUMINESCENCE OF TI DOPED 6H-SIC GROWN BY VAPOR-PHASE EPITAXY
    KIMOTO, T
    NISHINO, H
    UEDA, T
    YAMASHITA, A
    YOO, WS
    MATSUNAMI, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1991, 30 (2B): : L289 - L291
  • [10] Excimer laser ablation of single crystal 4H-SiC and 6H-SiC wafers
    Gupta, Saurabh
    Pecholt, Ben
    Molian, Pal
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (01) : 196 - 206