Two Generalizations of Bohr Radius

被引:0
作者
Chengpeng Li
Mingxin Chen
Jianfei Wang
机构
[1] Huaqiao University,School of Mathematical Sciences
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
Bohr radius; hyperbolic metric; holomorphic mapping; convex mapping; 32H02; 32A10;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is twofold. First, by using the hyperbolic metric, we establish the Bohr radius for analytic functions from shifted disks containing the unit disk D into convex proper domains of the complex plane. As a consequence, we generalize the Bohr radius of Evdoridis, Ponnusamy and Rasila based on geometric idea. By introducing an alternative multidimensional Bohr radius, the second purpose is to obtain the Bohr radius of higher dimensions for Carathéodory families in the unit ball B of a complex Banach space X. Notice that when B is the unit ball of the complex Hilbert space X, we show that the constant 1/3 is the Bohr radius for normalized convex mappings of B, which generalizes the result of convex functions on D.
引用
收藏
页码:583 / 596
页数:13
相关论文
共 47 条
[1]  
Bohr H(1914)A theorem concerning power series Proc Lond Math Soc 13 1-5
[2]  
Tomic M(1962)Sur un théorème de H. Bohr. Math Scand 11 103-106
[3]  
Sidon S(1927)Über einen Satz von Herrn Bohr Math Z 26 731-732
[4]  
Paulsen V(2002)On Bohr’s inequality Proc Lond Math Soc 85 493-512
[5]  
Popescu G(2010)Bohr’s phenomenon in subordination and bounded harmonic classes Complex Var Elliptic Equ 55 1071-1078
[6]  
Singh D(2018)Bohr phenomenon for subordinating families of certain univalent functions J Math Anal Appl 462 1087-1098
[7]  
Muhanna Y(2007)Generalization of results about the Bohr radius for power series Stud Math 180 161-168
[8]  
Bhowmik B(2021)Bohr radius for certain classes of starlike and convex univalent functions J Math Anal Appl 493 124519-167
[9]  
Das N(2017)A note on Bohr’s phenomenon for power series J Math Anal Appl 449 154-2979
[10]  
Aizenberg L(1997)Bohr’s power series theorem in several variables Proc Amer Math Soc 125 2975-1155