Deviation inequalities and moderate deviations for estimators of parameters in TAR models

被引:0
作者
Jun Fan
Fuqing Gao
机构
[1] Hebei University of Technology,School of Science
[2] Wuhan University,School of Mathematics and Statistics
来源
Frontiers of Mathematics in China | 2011年 / 6卷
关键词
Threshold autoregressive model; least square estimator; moderate deviations; logarithmic Sobolev inequality; 60F10; 62M10; 62F12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some deviation inequalities and the moderate deviation principles for the least squares estimators of the parameters in the threshold autoregressive model under the assumption that the noise random variable satisfies a logarithmic Sobolev inequality.
引用
收藏
页码:1067 / 1083
页数:16
相关论文
共 21 条
[1]  
Bercu B.(1997)Large deviations for quadratic forms of Gaussian stationary processes Stoch Proc Appl 71 75-90
[2]  
Gamboa F.(2006)Concentration of measure on product spaces with applications to Markov processes Studia Math 175 47-72
[3]  
Rouault A.(1999)Exponential integrability and transportation cost related to logarithmic Sobolev inequalities J Funct Anal 163 1-28
[4]  
Blower G.(1997)Large deviations for quadratic functionals of Gaussian functionals J Theor Prob 10 307-332
[5]  
Bolley F.(1991)On the ergodicity of TAR(1) processes Ann Appl Probab 1 613-634
[6]  
Bobkov S. G.(2006)Moderate deviations for non-linear functionals and empirical spectral density of moving average processes Ann Inst H Poincaré Probab Statist 42 393-416
[7]  
Götze F.(2007)Ergodicity and invertibility of threshold MA models Bernoulli 13 161-168
[8]  
Bryc W.(1984)A threshold AR(1) model J Appl Prob 21 270-286
[9]  
Dembo A.(1994)The method of stochastic exponentials for large deviations Stochast Proc Appl 54 45-70
[10]  
Chen R.(1998)Logarithmic Sobolev inequalities and the growth of Proc Amer Math Soc 126 2309-2314