Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data

被引:0
作者
Lijia Yu
Yue Cao
Jean Y. H. Yang
Pengyi Yang
机构
[1] University of Sydney,School of Mathematics and Statistics
[2] University of Sydney,Computational Systems Biology Group, Children’s Medical Research Institute
[3] University of Sydney,Charles Perkins Centre
来源
Genome Biology | / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 153 条
[1]  
Bacher R(2016)Design and computational analysis of single-cell RNA-sequencing experiments Genome Biol. 17 63-282
[2]  
Kendziorski C(2019)Challenges in unsupervised clustering of single-cell RNA-seq data Nat Rev Genet. 20 273-122
[3]  
Kiselev VY(2018)A systematic performance evaluation of clustering methods for single-cell RNA-seq data F1000Res. 7 1141-416
[4]  
Andrews TS(2018)Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data F1000Res. 7 1297-763
[5]  
Hemberg M(2018)Identifying cell populations with scRNASeq Mol Aspects Med. 59 114-65
[6]  
Duò A(1999)On finding the number of clusters Pattern Recognit Lett. 20 405-27
[7]  
Robinson MD(2003)Finding the number of clusters in a dataset J Am Stat Assoc. 98 750-213
[8]  
Soneson C(2019)Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data Nucleic Acids Res. 47 53-255
[9]  
Freytag S(1987)Silhouettes: a graphical aid to the interpretation and validation of cluster analysis J Comput Appl Math. 20 59-423
[10]  
Tian L(2017)CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data Genome Biol. 18 1-386