Minimum general sum-connectivity index of unicyclic graphs

被引:0
作者
Zhibin Du
Bo Zhou
Nenad Trinajstić
机构
[1] South China Normal University,Department of Mathematics
[2] The Rugjer Bošković Institute,undefined
来源
Journal of Mathematical Chemistry | 2010年 / 48卷
关键词
General Randić connectivity index; General product-connectivity index; General sum-connectivity index; Properties;
D O I
暂无
中图分类号
学科分类号
摘要
The general sum-connectivity index of a graph G is defined as χα (G) = ∑edges (du + dv)α, where du denotes the degree of vertex u in G and α is a real number. In this report, we determine the minimum and the second minimum values of the general sum-connectivity indices of n-vertex unicyclic graphs for non-zero α ≥ −1, and characterize the corresponding extremal graphs.
引用
收藏
页码:697 / 703
页数:6
相关论文
共 24 条
[1]  
Bollobás B.(1998)Graphs of extremal weights Ars. Combin. 50 225-233
[2]  
Erdös P.(1975)On characterization of molecular branching J. Am. Chem. Soc. 97 6609-6615
[3]  
Randić M.(2000)From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors Chem. Rev. 100 3827-3858
[4]  
Pogliani L.(2001)The connectivity index 25 years later J. Mol. Graph. Model. 20 19-35
[5]  
Randić M.(2008)Some new trends in chemical graph theory Chem. Rev. 108 1127-1169
[6]  
García-Domenech R.(2010)On general sum-connectivity index J. Math. Chem. 47 210-218
[7]  
Gálvez J.(2009)On a novel connectivity index J. Math. Chem. 46 1252-1270
[8]  
de Julián-Ortiz J.V.(2009)Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons Chem. Phys. Lett. 475 146-148
[9]  
Pogliani L.(2010)Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number J. Math. Chem. 47 842-855
[10]  
Zhou B.(1998)The vertex-connectivity index revisited J. Chem. Inf. Comput. Sci. 38 819-822