Applications of deep learning for mobile malware detection: A systematic literature review

被引:0
|
作者
Cagatay Catal
Görkem Giray
Bedir Tekinerdogan
机构
[1] Qatar University,Department of Computer Science and Engineering
[2] Wageningen University and Research,Information Technology Group
来源
Neural Computing and Applications | 2022年 / 34卷
关键词
Deep learning; Machine learning; Mobile applications; Malware detection; Systematic literature review (SLR); Cybersecurity;
D O I
暂无
中图分类号
学科分类号
摘要
For detecting and resolving the various types of malware, novel techniques are proposed, among which deep learning algorithms play a crucial role. Although there has been a lot of research on the development of DL-based mobile malware detection approaches, they were not reviewed in detail yet. This paper aims to identify, assess, and synthesize the reported articles related to the application of DL techniques for mobile malware detection. A Systematic Literature Review is performed in which we selected 40 journal articles for in-depth analysis. This SLR presents and categorizes these articles based on machine learning categories, data sources, DL algorithms, evaluation parameters & approaches, feature selection techniques, datasets, and DL implementation platforms. The study also highlights the challenges, proposed solutions, and future research directions on the use of DL in mobile malware detection. This study showed that Convolutional Neural Networks and Deep Neural Networks algorithms are the most used DL algorithms. API calls, Permissions, and System Calls are the most dominant features utilized. Keras and Tensorflow are the most popular platforms. Drebin and VirusShare are the most widely used datasets. Supervised learning and static features are the most preferred machine learning and data source categories.
引用
收藏
页码:1007 / 1032
页数:25
相关论文
共 50 条
  • [21] Malware Detection with Artificial Intelligence: A Systematic Literature Review
    Gaber, Matthew G.
    Ahmed, Mohiuddin
    Janicke, Helge
    ACM COMPUTING SURVEYS, 2024, 56 (06)
  • [22] Weed Detection Using Deep Learning: A Systematic Literature Review
    Murad, Nafeesa Yousuf
    Mahmood, Tariq
    Forkan, Abdur Rahim Mohammad
    Morshed, Ahsan
    Jayaraman, Prem Prakash
    Siddiqui, Muhammad Shoaib
    SENSORS, 2023, 23 (07)
  • [23] A Fuzzy Deep Learning Network for Dynamic Mobile Malware Detection
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,
  • [24] Deep learning for image-based mobile malware detection
    Mercaldo, Francesco
    Santone, Antonella
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2020, 16 (02) : 157 - 171
  • [25] Deep learning for image-based mobile malware detection
    Francesco Mercaldo
    Antonella Santone
    Journal of Computer Virology and Hacking Techniques, 2020, 16 : 157 - 171
  • [26] A Systematic Overview of the Machine Learning Methods for Mobile Malware Detection
    Kim, Yu-kyung
    Lee, Jemin Justin
    Go, Myong-Hyun
    Kang, Hae Young
    Lee, Kyungho
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [27] Review of Android Malware Detection Based on Deep Learning
    Wang, Zhiqiang
    Liu, Qian
    Chi, Yaping
    IEEE ACCESS, 2020, 8 : 181102 - 181126
  • [28] A review of deep learning based malware detection techniques
    Wang, Huijuan
    Cui, Boyan
    Yuan, Quanbo
    Shi, Ruonan
    Huang, Mengying
    NEUROCOMPUTING, 2024, 598
  • [29] Deep learning applications in investment portfolio management: a systematic literature review
    Novykov, Volodymyr
    Bilson, Christopher
    Gepp, Adrian
    Harris, Geoff
    Vanstone, Bruce James
    JOURNAL OF ACCOUNTING LITERATURE, 2025, 47 (02) : 245 - 276
  • [30] A systematic literature review on deep learning applications for precision cattle farming
    Mahmud, Md Sultan
    Zahid, Azlan
    Das, Anup Kumar
    Muzammil, Muhammad
    Khan, Muhammad Usman
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 187