Dirichlet and Neumann eigenvalue problems on CR manifolds

被引:0
作者
Amine Aribi
Sorin Dragomir
机构
[1] Université François Rabelais,Laboratoire de Mathématiques et Physique Théorique
[2] Università degli Studi della Basilicata,Dipartimento di Matematica e Informatica
来源
Ricerche di Matematica | 2018年 / 67卷
关键词
CR manifold; Hörmander system; Carnot–Carathéodory metric; Sublaplacian; 32V20; 35H20; 53C99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the properties of Carnot–Carathéodory spaces attached to a strictly pseudoconvex CR manifold M, in a neighborhood of each point x∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in M$$\end{document}, versus the pseudohermitian geometry of M arising from a fixed positively oriented contact form θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} on M. The weak Dirichlet problem for the sublaplacian Δb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _b$$\end{document} on (M,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M, \theta )$$\end{document} is solved on domains Ω⊂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset M$$\end{document} supporting the Poincaré inequality. The solution to Neumann problem for the sublaplacian Δb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _b$$\end{document} on a C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,1}$$\end{document} connected (ϵ,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\epsilon , \delta )$$\end{document}-domain Ω⊂G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {{\mathbb {G}}}$$\end{document} in a Carnot group (due to Danielli et al. in: Memoirs of American Mathematical Society 2006) is revisited for domains in a CR manifold. As an application we prove discreetness of the Dirichlet and Neumann spectra of Δb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _b$$\end{document} on Ω⊂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset M$$\end{document} in a Carnot–Carthéodory complete pseudohermitian manifold (M,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M, \theta )$$\end{document}.
引用
收藏
页码:285 / 320
页数:35
相关论文
共 45 条
[1]  
Barletta E(1997)On the spectrum of a strictly pseudoconvex CR manifold Abh. Math. Sem. Univ. Hambg. 67 143-153
[2]  
Dragomir S(2007)The Lichnerowicz theorem on CR manifolds Tsukuba J. Math. 31 77-97
[3]  
Barletta E(2006)Yang–Mills fields on CR manifolds J. Math. Phys. 47 083504 1-41-304
[4]  
Barletta E(1969)Principe du maximum, inégalité de Harnak et unicité du problème de Cauchy pour les opérateurs elliptiques dégénéré Ann. Inst. Fourier Grenoble 19 277-287
[5]  
Dragomir S(2009)Nonnegativity of CR Paneitz operator and its application to the CR Obata’s theorem J. Geom. Anal. 19 261-105
[6]  
Urakawa H(1939)Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung Math. Ann. 117 98-202
[7]  
Bony JM(1998)Trace inequalities for Carnot–Carathéodory spaces and applications Ann. Scuola Norm. Super. Pisa 27 195-396
[8]  
Chang S-C(2008)Minimality in CR geometry and the CR Yamabe problem on CR manifolds with boundary J. Math. Soc. Jpn. 60 363-541
[9]  
Chiu H-L(1983)Hölder regularity theorem for a class of non uniformly elliptic operators with measurable coefficients Ann. Scuola Norm. Super. Pisa 10 523-604
[10]  
Chow WL(1995)Representation formulas and weighted Poincaré inequalities for Hörmander vector fields Ann. Inst. Fourier (Grenoble) 45 577-14