Normality Concerning Shared Values Between two Families

被引:0
作者
Jianming Chang
机构
[1] School of Mathematics and Statistics,School of Mathematical Sciences
[2] Changshu Institute of Technology,undefined
[3] Qufu Normal University,undefined
来源
Computational Methods and Function Theory | 2021年 / 21卷
关键词
Normal family; Shared value; Meromorphic function; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
We improve a normality result of Liu–Li–Pang [4] concerning shared values between two families. Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal F$$\end{document} and G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G$$\end{document} be two families of meromorphic functions on D whose zeros are multiple. Suppose that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G$$\end{document} is normal on D, and no sequence contained in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G$$\end{document}χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}-converges locally uniformly to ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} or a function g satisfying g′≡1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g'\equiv 1$$\end{document}. If for every f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal F$$\end{document}, there exists a function g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in \mathcal G$$\end{document} such that f and g share 0 and ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} while f′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'$$\end{document} and g′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g'$$\end{document} share 1, then F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal F$$\end{document} is also normal on D.
引用
收藏
页码:465 / 472
页数:7
相关论文
共 11 条
  • [1] Chang JM(2005)Normality and fixed-points of meromorphic functions Ark. Mat. 43 307-321
  • [2] Fang ML(2013)A normal criterion about two families of meromorphic functions concerning shared values Acta Math. Sinica 29 151-158
  • [3] Zalcman L(2000)Normal families and shared values Bull. Lond. Math. Soc. 32 325-331
  • [4] Liu XJ(2000)Normality and shared values Ark. Mat. 38 171-182
  • [5] Li SH(1992)Sharing values and normality Arch Math. 59 50-54
  • [6] Pang XC(undefined)undefined undefined undefined undefined-undefined
  • [7] Pang XC(undefined)undefined undefined undefined undefined-undefined
  • [8] Zalcman L(undefined)undefined undefined undefined undefined-undefined
  • [9] Pang XC(undefined)undefined undefined undefined undefined-undefined
  • [10] Zalcman L(undefined)undefined undefined undefined undefined-undefined