Hardy and Rellich inequalities for anisotropic p-sub-Laplacians

被引:0
作者
M. Ruzhansky
B. Sabitbek
D. Suragan
机构
[1] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Queen Mary University of London,School of Mathematical Sciences
[3] Institute of Mathematics and Mathematical Modeling,Department of Mathematics
[4] Al-Farabi Kazakh National University,undefined
[5] Nazarbayev University,undefined
来源
Banach Journal of Mathematical Analysis | 2020年 / 14卷
关键词
Stratified group; Anisotropic ; -sub-Laplacian; Hardy inequality; Rellich inequality; Picone identity; 35A23; 35H20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the subelliptic Picone type identities. As consequences, we obtain Hardy and Rellich type inequalities for anisotropic p-sub-Laplacians which are operators of the form Lpf:=∑i=1NXi|Xif|pi-2Xif,1<pi<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {L}}_{p}f:= \sum _{i=1}^{N} X_i\left( |X_i f|^{p_i-2} X_i f \right) ,\quad 1<p_i<\infty , \end{aligned}$$\end{document}where Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_i$$\end{document}, i=1,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots , N$$\end{document}, are the generators of the first stratum of a stratified (Lie) group. Moreover, analogues of Hardy type inequalities with multiple singularities and many-particle Hardy type inequalities are obtained on stratified groups.
引用
收藏
页码:380 / 398
页数:18
相关论文
共 28 条
  • [1] Allegretto W(1998)A Picone’s identity for the p-Laplacian and applications Nonlinear Anal. 32 819-830
  • [2] Huang YX(2004)The pseudo-p-Laplace eigenvalue problem and viscosity solutions as ESAIM Control Optim. Calc. Var. (1) 10 28-52
  • [3] Belloni M(2017)Anisotropic Picone identities and anisotropic Hardy inequalities J. Inequal. Appl. 2017 16-115
  • [4] Kawohl B(2008)Many-particle Hardy inequalities J. Lond. Math. Soc. 77 99-858
  • [5] Feng T(2016)On continuous and discrete Hardy inequalities J. Spectr. Theory 6 837-3630
  • [6] Cui X(2015)Geometric extensions of many-particle Hardy inequalities J. Phys. A: Math. Theor. 48 175203-350
  • [7] Hoffmann-Ostenhof M(2001)Hardy type and Rellich type inequalities on the Heisenberg group Proc. Am. Math. Soc. 129 3623-1046
  • [8] Hoffmann-Ostenhof T(2001)Hölder regularity for solutions of ultraparabolic equations in divergence form Potent. Anal. 14 341-1821
  • [9] Laptev A(2008)Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term Rev. Math. Iberoam. 24 1011-462
  • [10] Tidblom J(2017)On horizontal Hardy, Rellich, Caffarelli–Kohn–Nirenberg and J. Differ. Equ. 262 1799-87