Improved Approximation Algorithms for the Min-max Tree Cover and Bounded Tree Cover Problems

被引:0
作者
M. Reza Khani
Mohammad R. Salavatipour
机构
[1] University of Maryland,Department of Computer Science
[2] University of Alberta,Department of Computing Science
来源
Algorithmica | 2014年 / 69卷
关键词
Approximation algorithms; Min-max tree cover; Bounded tree cover;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide improved approximation algorithms for the Min-Max Tree Cover and Bounded Tree Cover problems. Given a graph G=(V,E) with weights w:E→ℤ+, a set T1,T2,…,Tk of subtrees of G is called a tree cover of G if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V=\bigcup_{i=1}^{k} V(T_{i})$\end{document}. In the Min-Max k-tree Cover problem we are given graph G and a positive integer k and the goal is to find a tree cover with k trees, such that the weight of the largest tree in the cover is minimized. We present a 3-approximation algorithm for this improving the two different approximation algorithms presented in Arkin et al. (J. Algorithms 59:1–18, 2006) and Even et al. (Oper. Res. Lett. 32(4):309–315, 2004) with ratio 4. The problem is known to have an APX-hardness lower bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{2}$\end{document} (Xu and Wen in Oper. Res. Lett. 38:169–173, 2010). In the Bounded Tree Cover problem we are given graph G and a bound λ and the goal is to find a tree cover with minimum number of trees such that each tree has weight at most λ. We present a 2.5-approximation algorithm for this, improving the 3-approximation bound in Arkin et al. (J. Algorithms 59:1–18, 2006).
引用
收藏
页码:443 / 460
页数:17
相关论文
共 26 条
  • [1] Arkin E.M.(2006)Approximations for minimum and min-max vehicle routing problems J. Algorithms 59 1-18
  • [2] Hassin R.(2008)Routing for relief efforts Transp. Sci. 42 127-145
  • [3] Levin A.(2004)Min-max tree covers of graphs Oper. Res. Lett. 32 309-315
  • [4] Campbell A.M.(1978)Approximation algorithms for some routing problems SIAM J. Comput. 7 178-193
  • [5] Vandenbussche D.(1997)Approximation algorithms for min-max tree partition J. Algorithms 24 266-286
  • [6] Hermann W.(2007)Approximating the k-traveling repairman problem with repair times J. Discrete Algorithms 5 293-303
  • [7] Even G.(1992)On the distance constrained vehicle routing problem Oper. Res. 40 790-799
  • [8] Garg N.(2005)Approximating the minmax rooted-subtree cover problem IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E88-A 1335-1338
  • [9] Konemann J.(2012)Approximation algorithms for distance constrained vehicle routing problems Networks 59 209-214
  • [10] Ravi R.(2010)Approximation hardness of min-max tree covers Oper. Res. Lett. 38 169-173