Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension

被引:15
作者
Kazek-Kesik, A. [1 ]
Dercz, G. [2 ]
Kalemba, I. [3 ]
Michalska, J. [4 ]
Piotrowski, J. [1 ]
Simka, W. [1 ]
机构
[1] Silesian Tech Univ, Fac Chem, PL-44100 Gliwice, Poland
[2] Univ Silesia, Inst Mat Sci, PL-41500 Chorzow, Poland
[3] AGH Univ Sci & Technol, Fac Met Engn & Ind Comp Sci, PL-30059 Krakow, Poland
[4] Silesian Tech Univ, Fac Mat Engn & Met, PL-40019 Katowice, Poland
关键词
Ti6Al7Nb alloy; Plasma electrolytic oxidation; Corrosion resistance; Simulated body fluid; TCP; CORROSION-RESISTANCE; TI SUBSTRATE; TITANIUM; FILMS; COATINGS; ROUGHNESS; SI;
D O I
10.1016/j.acme.2013.10.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this work, we describe surface modifications to a Ti6Al7Nb alloy resulting from plasma electrolytic oxidation (PEO) in two different solutions: one containing 0.1 mol/dm(3) Ca (H2PO2)(2) and 100 g/dm(3) TCP (tricalcium phosphate) and another containing 0.1 mol/dm(3) Ca(H2PO2)(2), 25 g/dm(3) TCP and 1 g/dm(3) NH4F. As a result of the PEO process, a porous oxide layer containing incorporated calcium and phosphorous compounds was formed on the Ti6Al7Nb alloy surface. The morphology and chemical composition of the Ti6Al7Nb alloy samples were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (TL-XRD). The contact angle and roughness of the oxide layer were measured. The anodized samples exhibited a higher surface roughness than the non-modified Ti6Al7Nb alloy. Bioactivity investigations using an SBF solution confirmed the formation of apatite on the anodized surfaces. Additionally, the modified surface of the titanium alloy exhibited a higher corrosion resistance than as-ground examples due to the formation of a thin oxide layer on the surface. (C) 2013 Politechnika Wroclawska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 31 条
  • [1] Akin FA, 2001, J BIOMED MATER RES, V57, P588, DOI 10.1002/1097-4636(20011215)57:4<588::AID-JBM1206>3.0.CO
  • [2] 2-Y
  • [3] Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces
    Bathomarco, RV
    Solorzano, G
    Elias, CN
    Prioli, R
    [J]. APPLIED SURFACE SCIENCE, 2004, 233 (1-4) : 29 - 34
  • [4] Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate
    Bow, JS
    Liou, SC
    Chen, SY
    [J]. BIOMATERIALS, 2004, 25 (16) : 3155 - 3161
  • [5] Influence of the forming electrolyte on the electrical properties of tantalum and niobium oxide films: an EIS comparative study
    Cavigliasso, GE
    Esplandiu, MJ
    Macagno, VA
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (11) : 1213 - 1219
  • [6] Microscopic observations of osteoblast growth on micro-arc oxidized β titanium
    Chen, Hsien-Te
    Chung, Chi-Jen
    Yang, Tsai-Ching
    Tang, Chin-Hsin
    He, Ju-Liang
    [J]. APPLIED SURFACE SCIENCE, 2013, 266 : 73 - 80
  • [7] Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium
    Cheng, Su
    Wei, Daqing
    Zhou, Yu
    Guo, Haifeng
    [J]. CERAMICS INTERNATIONAL, 2011, 37 (06) : 1761 - 1768
  • [8] Cimenoglu H., 2009, J EUROPEAN CERAMIC S, V29, P2527
  • [9] Surface modifications and cell-materials interactions with anodized Ti
    Das, Kakoli
    Bose, Susmita
    Bandyopadhyay, Amit
    [J]. ACTA BIOMATERIALIA, 2007, 3 (04) : 573 - 585
  • [10] Dorozhkin SV, 2002, ANGEW CHEM INT EDIT, V41, P3130, DOI 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO