Developing CRS iterative methods for periodic Sylvester matrix equation

被引:0
作者
Linjie Chen
Changfeng Ma
机构
[1] Fujian Normal University,College of Mathematics and Informatics
来源
Advances in Difference Equations | / 2019卷
关键词
Conjugate residual squared; Iterative method; Periodic Sylvester matrix equation; Kronecker product; Vectorization operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by applying Kronecker product and vectorization operator, we extend two mathematical equivalent forms of the conjugate residual squared (CRS) method to solve the periodic Sylvester matrix equation AjXjBj+CjXj+1Dj=Ejfor j=1,2,…,λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} A_{j} X_{j} B_{j} + C_{j} X_{j+1} D_{j} = E_{j} \quad \text{for } j=1,2, \ldots ,\lambda . \end{aligned}$$ \end{document} We give some numerical examples to compare the accuracy and efficiency of the matrix CRS iterative methods with other methods in the literature. Numerical results validate that the proposed methods are superior to some existing methods and that equivalent mathematical methods can show different numerical performance.
引用
收藏
相关论文
共 50 条
[41]   Extending the GPBiCG algorithm for solving the generalized Sylvester-transpose matrix equation [J].
Masoud Hajarian .
International Journal of Control, Automation and Systems, 2014, 12 :1362-1365
[42]   The reflexive and Hermitian reflexive solutions of the generalized Sylvester-conjugate matrix equation [J].
Hajarian, Masoud ;
Dehghan, Mehdi .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (04) :639-653
[43]   A matrix LSQR iterative method to solve matrix equation AXB = C [J].
Peng, Zhen-Yun .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (08) :1820-1830
[44]   Advances in Iterative Methods and Preconditioners for the Helmholtz Equation [J].
Yogi A. Erlangga .
Archives of Computational Methods in Engineering, 2008, 15 :37-66
[45]   Convergence theory of efficient parametric iterative methods for solving the Yang-Baxter-like matrix equation [J].
Erfanifar, Raziyeh ;
Sayevand, Khosro ;
Hajarian, Masoud .
ENGINEERING COMPUTATIONS, 2025, 42 (01) :255-276
[46]   Iterative methods for the extremal positive definite solution of the matrix equation X+A*X-αA=Q☆ [J].
Peng, Zhen-yun ;
El-Sayed, Salah M. ;
Zhang, Xiang-lin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) :520-527
[47]   Iterative methods for computing the matrix square root [J].
Amat S. ;
Ezquerro J.A. ;
Hernández-Verón M.A. .
SeMA Journal, 2015, 70 (1) :11-21
[48]   Three Methods for Solving Generalized Sylvester Matrix Equations Over Boolean Algebra [J].
Hashemi, Behnam ;
Shirazi, Mahsa Nasrollahi ;
Tavakolipour, Hanieh .
JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2015, 25 (4-5) :427-445
[49]   Solving Two Coupled Fuzzy Sylvester Matrix Equations Using Iterative Least-squares Solutions [J].
Bayoumi, Ahmed M. E. ;
Ramadan, Mohamed A. .
FUZZY INFORMATION AND ENGINEERING, 2020, 12 (04) :464-489
[50]   A finite iterative method for solving the generalized Hamiltonian solutions of coupled Sylvester matrix equations with conjugate transpose [J].
Li, Sheng-Kun .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (04) :757-773