Developing CRS iterative methods for periodic Sylvester matrix equation

被引:0
作者
Linjie Chen
Changfeng Ma
机构
[1] Fujian Normal University,College of Mathematics and Informatics
来源
Advances in Difference Equations | / 2019卷
关键词
Conjugate residual squared; Iterative method; Periodic Sylvester matrix equation; Kronecker product; Vectorization operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by applying Kronecker product and vectorization operator, we extend two mathematical equivalent forms of the conjugate residual squared (CRS) method to solve the periodic Sylvester matrix equation AjXjBj+CjXj+1Dj=Ejfor j=1,2,…,λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} A_{j} X_{j} B_{j} + C_{j} X_{j+1} D_{j} = E_{j} \quad \text{for } j=1,2, \ldots ,\lambda . \end{aligned}$$ \end{document} We give some numerical examples to compare the accuracy and efficiency of the matrix CRS iterative methods with other methods in the literature. Numerical results validate that the proposed methods are superior to some existing methods and that equivalent mathematical methods can show different numerical performance.
引用
收藏
相关论文
共 50 条
[31]   On the solution of fully fuzzy Sylvester matrix equation with trapezoidal fuzzy numbers [J].
Ahmed Abdel Aziz Elsayed ;
Nazihah Ahmad ;
Ghassan Malkawi .
Computational and Applied Mathematics, 2020, 39
[32]   Developing Bi-CG and Bi-CR Methods to Solve Generalized Sylvester-transpose Matrix Equations [J].
Masoud Hajarian .
International Journal of Automation and Computing, 2014, (01) :25-29
[33]   On the solution of fully fuzzy Sylvester matrix equation with trapezoidal fuzzy numbers [J].
Elsayed, Ahmed Abdel Aziz ;
Ahmad, Nazihah ;
Malkawi, Ghassan .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04)
[35]   Iterative meshfree methods for the Helmholtz equation [J].
von Estorff, O. ;
Wenterodt, C. .
BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXXII, BEM/MRM 2010, 2010, :157-167
[36]   AN ITERATIVE METHOD TO SOLVE A NONLINEAR MATRIX EQUATION [J].
Peng, Jingjing ;
Liao, Anping ;
Peng, Zhenyun .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 :620-632
[37]   Iterative Hermitian R-Conjugate Solutions to General Coupled Sylvester Matrix Equations [J].
Li, Sheng-Kun .
FILOMAT, 2017, 31 (07) :2061-2072
[38]   Explicit and Iterative Methods for Solving the Matrix Equation AV plus BW=EVF plus C [J].
Ramadan, Mohamed A. ;
Bayoumi, Ahmed M. E. .
ASIAN JOURNAL OF CONTROL, 2015, 17 (03) :1070-1080
[39]   Sufficient conditions for the solvability of a Sylvester-like absolute value matrix equation [J].
Hashemi, Behnam .
APPLIED MATHEMATICS LETTERS, 2021, 112