Developing CRS iterative methods for periodic Sylvester matrix equation

被引:0
作者
Linjie Chen
Changfeng Ma
机构
[1] Fujian Normal University,College of Mathematics and Informatics
来源
Advances in Difference Equations | / 2019卷
关键词
Conjugate residual squared; Iterative method; Periodic Sylvester matrix equation; Kronecker product; Vectorization operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by applying Kronecker product and vectorization operator, we extend two mathematical equivalent forms of the conjugate residual squared (CRS) method to solve the periodic Sylvester matrix equation AjXjBj+CjXj+1Dj=Ejfor j=1,2,…,λ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} A_{j} X_{j} B_{j} + C_{j} X_{j+1} D_{j} = E_{j} \quad \text{for } j=1,2, \ldots ,\lambda . \end{aligned}$$ \end{document} We give some numerical examples to compare the accuracy and efficiency of the matrix CRS iterative methods with other methods in the literature. Numerical results validate that the proposed methods are superior to some existing methods and that equivalent mathematical methods can show different numerical performance.
引用
收藏
相关论文
共 50 条
[1]   Developing CRS iterative methods for periodic Sylvester matrix equation [J].
Chen, Linjie ;
Ma, Changfeng .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[3]   A matrix CRS iterative method for solving a class of coupled Sylvester-transpose matrix equations [J].
Chen, Cai-Rong ;
Ma, Chang-Feng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) :1223-1231
[4]   A Numerical Approach To Generalized Periodic Sylvester Matrix Equation [J].
Lv, Lingling ;
Zhang, Zhe .
ASIAN JOURNAL OF CONTROL, 2019, 21 (05) :2468-2475
[6]   Modified Jacobi-Gradient Iterative Method for Generalized Sylvester Matrix Equation [J].
Sasaki, Nopparut ;
Chansangiam, Pattrawut .
SYMMETRY-BASEL, 2020, 12 (11) :1-15
[7]   Iterative algorithm for the reflexive solutions of the generalized Sylvester matrix equation [J].
Mohamed A. Ramadan ;
Naglaa M. El–shazly ;
Basem I. Selim .
Journal of the Egyptian Mathematical Society, 27 (1)
[8]   On the solution of the fuzzy Sylvester matrix equation [J].
Salkuyeh, Davod Khojasteh .
SOFT COMPUTING, 2011, 15 (05) :953-961
[10]   Iterative methods for solving linear matrix equation and linear matrix system [J].
Su, Youfeng ;
Chen, Guoliang .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (04) :763-774