Unrevealing metabolomics for abiotic stress adaptation and tolerance in plants

被引:23
|
作者
Choudhury S. [1 ,2 ]
Sharma P. [3 ]
Moulick D. [1 ]
Mazumder M.K. [1 ,4 ]
机构
[1] Plant Stress Biology and Metabolomics Laboratory, Central Instrumentation Laboratory, Assam University, Silchar
[2] Department of Life Science and Bioinformatics, Assam University, Silchar
[3] Don Bosco School, Silchar
[4] Department of Zoology, Dhemaji College, Dhemaji
关键词
Abiotic stress; Mass spectrometry; Metabolomics; NMR; Systems biology;
D O I
10.1007/s12892-021-00102-8
中图分类号
学科分类号
摘要
The post-genomic era has witnessed several new possibilities to understand diverse functional aspects of plants quite precisely. From genomics to metabolomics and now phenomics, the complex interplay of these biological networks has been successfully elucidated. Abiotic stresses, such as drought, flooding, exposure to heavy metals and metalloids, and high or low temperature are foremost constraints in agriculture, and remains as the major reason for poor crop productivity and low yield globally. The primary aim of metabolomics is to identify final gene products, the metabolites, which serve as prospective markers (or traits) to comprehend abiotic stress adaptation and tolerance in plants. This review provides an overview on the application of metabolomics as a comprehensive tool for “Systems Biology Approach” to unravel the complex interaction of networks and components in plants towards abiotic stress adaptation and tolerance. © 2021, Korean Society of Crop Science (KSCS).
引用
收藏
页码:479 / 493
页数:14
相关论文
共 50 条
  • [41] Ion transporters and their exploration for conferring abiotic stress tolerance in plants
    Tan, Pengpeng
    Du, Xuhua
    Shang, Yangjuan
    Zhu, Kaikai
    Joshi, Shrushti
    Kaur, Kawaljeet
    Khare, Tushar
    Kumar, Vinay
    PLANT GROWTH REGULATION, 2022, 96 (01) : 1 - 23
  • [42] FUNCTIONS OF FLAVONOID AND BETALAIN PIGMENTS IN ABIOTIC STRESS TOLERANCE IN PLANTS
    Davies, Kevin M.
    Albert, Nick W.
    Zhou, Yanfei
    Schwinn, Kathy E.
    ANNUAL PLANT REVIEWS ONLINE, 2018, 1 (01): : 21 - 61
  • [43] Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants
    Sako, Kaori
    Huong Mai Nguyen
    Seki, Motoaki
    PLANT AND CELL PHYSIOLOGY, 2020, 61 (12) : 1995 - 2003
  • [44] Engineering of betaine biosynthesis and transport for abiotic stress tolerance in plants
    Takabe, Teruhiro
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 21 (01) : S58 - S62
  • [45] Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants
    Kumar, Manoj
    Kumar Patel, Manish
    Kumar, Navin
    Bajpai, Atal Bihari
    Siddique, Kadambot H. M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
  • [46] Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants
    Joshi, Rini
    Paul, Meenu
    Kumar, Anil
    Pandey, Dinesh
    GENE, 2019, 714
  • [47] Role of DREB transcription factors in abiotic and biotic stress tolerance in plants
    Pradeep K. Agarwal
    Parinita Agarwal
    M. K. Reddy
    Sudhir K. Sopory
    Plant Cell Reports, 2006, 25 : 1263 - 1274
  • [48] Role of DREB transcription factors in abiotic and biotic stress tolerance in plants
    Agarwal, Pradeep K.
    Agarwal, Parinita
    Reddy, M. K.
    Sopory, Sudhir K.
    PLANT CELL REPORTS, 2006, 25 (12) : 1263 - 1274
  • [49] Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms
    Mishra, Neelam
    Jiang, Chenkai
    Chen, Lin
    Paul, Abhirup
    Chatterjee, Archita
    Shen, Guoxin
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [50] Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants
    Raza, Ali
    Charagh, Sidra
    Zahid, Zainab
    Mubarik, Muhammad Salman
    Javed, Rida
    Siddiqui, Manzer H.
    Hasanuzzaman, Mirza
    PLANT CELL REPORTS, 2021, 40 (08) : 1513 - 1541