Extension Functors of Cousin Cohomology Modules

被引:0
作者
Hamidreza Bamdad
Alireza Vahidi
机构
[1] Payame Noor University (PNU),Department of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2018年 / 44卷
关键词
Cousin complexes; Extension functors; Serre subcategories; Primary 13D02; Secondary 13D07;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative Noetherian ring with non-zero identity, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} a filtration of Spec(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Spec}}}(R)$$\end{document} which admits an R-module X, and CR(F,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{C}}}_R(\mathcal {F},X)$$\end{document} the Cousin complex for X with respect to F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}. In this paper, we first introduce the Cousin functor and the Cousin spectral sequences. Then for non-negative integers s, t and a finite R-module N, we study the membership of R-modules Hs-1(ExtRt(N,CR(F,X)))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{H}}}^{s-1}({{\mathrm{Ext}}}^t_R(N,{{\mathrm{C}}}_R(\mathcal {F},X)))$$\end{document} and ExtRs(N,Ht-1(CR(F,X)))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Ext}}}^{s}_R(N,{{\mathrm{H}}}^{t-1}({{\mathrm{C}}}_R(\mathcal {F},X)))$$\end{document} in Serre subcategories of the category of R-modules and find some conditions for validity of an isomorphism between them. Finally, we use these results to present some facts about the vanishing and finiteness of Cousin cohomology modules.
引用
收藏
页码:253 / 267
页数:14
相关论文
共 21 条
[1]  
Dibaei MT(2005)A study of Cousin complexes through the dualizing complexes Commun. Algebra 33 119-132
[2]  
Dibaei MT(2008)Modules with finite Cousin cohomologies have uniform local cohomological annihilators J. Algebra 319 3291-3300
[3]  
Jafari R(1998)The structure of dualizing complex for a ring which is ( J. Math. Kyoto Univ. 38 503-516
[4]  
Dibaei MT(2001)) J. Pure Appl. Algebra 155 17-28
[5]  
Tousi M(2008)A generalization of the dualizing complex structure and its applications Trans. Am. Math. Soc. 360 2709-2739
[6]  
Dibaei MT(2005)Finiteness of Cousin cohomologies Contemp. Math. 375 3-133
[7]  
Tousi M(1985)Pseudofunctorial behavior of Cousin complexes on formal schemes Glasgow Math. J. 26 51-76
[8]  
Kawasaki T(1969)Cousin complexes and generalized fractions Math. Z. 112 340-356
[9]  
Lipman J(1970)The Cousin complex for a module over a commutative Noetherian ring Math. Z. 115 117-139
[10]  
Nayak S(1982)Gorenstein modules Q. J. Math. Oxf. 33 471-485