Existence of martingale solutions and large-time behavior for a stochastic mean curvature flow of graphs

被引:0
作者
Nils Dabrock
Martina Hofmanová
Matthias Röger
机构
[1] Technische Universität Dortmund,Fakultät für Mathematik
[2] Bielefeld University,Faculty of Mathematics
来源
Probability Theory and Related Fields | 2021年 / 179卷
关键词
Stochastic mean curvature flow; Variational SPDE; Martingale solutions; Energy estimates; Large-time behavior; 60H15; 60H30; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with a stochastic mean curvature flow of graphs over a periodic domain of any space dimension. For the first time, we are able to construct martingale solutions which satisfy the equation pointwise and not only in a generalized (distributional or viscosity) sense. Moreover, we study their large-time behavior. Our analysis is based on a viscous approximation and new global bounds, namely, an Lω,x,t∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }_{\omega ,x,t}$$\end{document} estimate for the gradient and an Lω,x,t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}_{\omega ,x,t}$$\end{document} bound for the Hessian. The proof makes essential use of the delicate interplay between the deterministic mean curvature part and the stochastic perturbation, which permits to show that certain gradient-dependent energies are supermartingales. Our energy bounds in particular imply that solutions become asymptotically spatially homogeneous and approach a Brownian motion perturbed by a random constant.
引用
收藏
页码:407 / 449
页数:42
相关论文
共 78 条
  • [1] Almgren F(1993)Curvature-driven flows: a variational approach SIAM J. Control Optim. 31 387-438
  • [2] Taylor JE(1993)Front propagation and phase field theory SIAM J. Control Optim. 31 439-469
  • [3] Wang L(1998)A new approach to front propagation problems: theory and applications Arch. Ration. Mech. Anal. 141 237-296
  • [4] Barles G(1997)Minimal barriers for geometric evolutions J. Differ. Equ. 139 76-103
  • [5] Soner HM(1995)Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 43-67
  • [6] Souganidis PE(2017)Stochastic Allen–Cahn approximation of the mean curvature flow: large deviations upper bound Arch. Ration. Mech. Anal. 224 659-707
  • [7] Barles G(2017)Stochastic Allen–Cahn equation with mobility NoDEA Nonlinear Differ. Equ. Appl. 24 Art. 54, 38-1032
  • [8] Souganidis PE(2018)Stationary solutions to the compressible Navier–Stokes system driven by stochastic forces Probab. Theory Relat. Fields 174 981-481
  • [9] Bellettini G(2007)Strong solutions to stochastic wave equations with values in Riemannian manifolds J. Funct. Anal. 253 449-300
  • [10] Novaga M(2008)Implicit time discretization of the mean curvature flow with a discontinuous forcing term Interfaces Free Bound. 10 283-786