Condensation in the Zero Range Process: Stationary and Dynamical Properties

被引:0
作者
Stefan Großkinsky
Gunter M. Schütz
Herbert Spohn
机构
[1] Technische Universität München,Zentrum Mathematik
[2] Institut für Festkörperforschung,undefined
[3] Forschungszentrum Jülich,undefined
来源
Journal of Statistical Physics | 2003年 / 113卷
关键词
Zero range process; nonequilibrium phase transition; equivalence of ensembles; relative entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The zero range process is of particular importance as a generic model for domain wall dynamics of one-dimensional systems far from equilibrium. We study this process in one dimension with rates which induce an effective attraction between particles. We rigorously prove that for the stationary probability measure there is a background phase at some critical density and for large system size essentially all excess particles accumulate at a single, randomly located site. Using random walk arguments supported by Monte Carlo simulations, we also study the dynamics of the clustering process with particular attention to the difference between symmetric and asymmetric jump rates. For the late stage of the clustering we derive an effective master equation, governing the occupation number at clustering sites.
引用
收藏
页码:389 / 410
页数:21
相关论文
共 41 条
[1]  
Kafri Y.(2002)Criterion for phase separation in one-dimensional driven systems Phys. Rev. Lett. 89 035702-290
[2]  
Levine E.(1970)Interaction of markov processes Adv. Math. 5 246-547
[3]  
Mukamel D.(1982)Invariant measures for the zero range process Ann. Probab. 10 525-468
[4]  
Schütz G. M.(1981)Ergodic theorems for coupled random walks and other systems with locally interacting components Z. Wahrscheinlichkeitstheorie verw. Gebiete 56 443-516
[5]  
Török J.(1997)Condensation in the backgammon model Nuclear Phys. B 493 505-57
[6]  
Spitzer F.(2000)Phase transitions in one-dimensional nonequilibrium systems Braz. J. Phys. 30 42-6328
[7]  
Andjel E. D.(2003)Dynamics of condensation in zero-range processes J. Phys. A: Math. Gen. 36 6313-429
[8]  
Liggett T. M.(1998)Phase separation in one-dimensional driven diffusive systems Phys. Rev. Lett. 80 425-521
[9]  
Spitzer F.(1998)Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring J. Phys. A 31 L45-540
[10]  
Bialas P.(2003)Onsager relations and eulerian hydrodynamic limit for systems with several conservation laws J. Stat. Phys. 112 497-1885