An adaptive high-order unfitted finite element method for elliptic interface problems

被引:0
|
作者
Zhiming Chen
Ke Li
Xueshuang Xiang
机构
[1] Chinese Academy of Sciences,LSEC, Academy of Mathematics and Systems Science
[2] University of Chinese Academy of Sciences,School of Mathematical Science
[3] Information Engineering University,Department of Basic
[4] China Academy of Space Technology,Qian Xuesen Laboratory of Space Technology
来源
Numerische Mathematik | 2021年 / 149卷
关键词
65N30;
D O I
暂无
中图分类号
学科分类号
摘要
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.
引用
收藏
页码:507 / 548
页数:41
相关论文
共 50 条
  • [1] An adaptive high-order unfitted finite element method for elliptic interface problems
    Chen, Zhiming
    Li, Ke
    Xiang, Xueshuang
    NUMERISCHE MATHEMATIK, 2021, 149 (03) : 507 - 548
  • [2] Analysis of a high-order unfitted finite element method for elliptic interface problems
    Lehrenfeld, Christoph
    Reusken, Arnold
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1351 - 1387
  • [3] AN UNFITTED HYBRID HIGH-ORDER METHOD FOR ELLIPTIC INTERFACE PROBLEMS
    Burman, Erik
    Ern, Alexandre
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1525 - 1546
  • [4] An unfitted interface penalty finite element method for elliptic interface problems
    Huang, Peiqi
    Wu, Haijun
    Xiao, Yuanming
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 323 : 439 - 460
  • [5] AN UNFITTED HYBRID HIGH-ORDER METHOD WITH CELL AGGLOMERATION FOR ELLIPTIC INTERFACE PROBLEMS
    Burman, Erik
    Cicuttin, Matteo
    Delay, Guillaume
    Ern, Alexandre
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A859 - A882
  • [6] An arbitrarily high order unfitted finite element method for elliptic interface problems with automatic mesh generation
    Chen, Zhiming
    Liu, Yong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491
  • [7] A MULTIGRID METHOD FOR UNFITTED FINITE ELEMENT DISCRETIZATIONS OF ELLIPTIC INTERFACE PROBLEMS
    Ludescher, Thomas
    Gross, Sven
    Reusken, Arnold
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A318 - A342
  • [8] An unfitted finite-element method for elliptic and parabolic interface problems
    Sinha, Rajen Kumar
    Deka, Bhupen
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2007, 27 (03) : 529 - 549
  • [9] A high-order source removal finite element method for a class of elliptic interface problems
    Ji, Haifeng
    Chen, Jinru
    Li, Zhilin
    APPLIED NUMERICAL MATHEMATICS, 2018, 130 : 112 - 130
  • [10] HIGH-ORDER MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    Hesthaven, Jan S.
    Zhang, Shun
    Zhu, Xueyu
    MULTISCALE MODELING & SIMULATION, 2014, 12 (02): : 650 - 666