Approximation by q Baskakov-Beta-Stancu operators

被引:11
作者
Prerna Maheshwari
Diwaker Sharma
机构
[1] Department of Mathematics, SRM University, NCR Campus, Ghaziabad, UP
[2] Modern Group of Institutions, Duhai, Ghaziabad, UP
关键词
Modulus of continuity; Q Baskakov Beta operators; Q-Baskakov operators; Weighted approximation;
D O I
10.1007/s12215-012-0090-6
中图分类号
学科分类号
摘要
In the present paper we propose the q analogue of the Baskakov-Beta-Stancu operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0,∞). In the end, we propose an open problem on Srivastava-Gupta operators. © Springer-Verlag 2012.
引用
收藏
页码:297 / 305
页数:8
相关论文
共 22 条
[1]  
Aral A., Gupta V., Generalized q Baskakov operators, Math. Slovaca, 61, 4, pp. 619-634, (2011)
[2]  
de Sole A., Kac V.G., On integral representations of q-gamma and q-betta functions, Rend. Mat. Accad. Lincei, 9, 16, (2005)
[3]  
de Vore R.A., Lorentz G.G., Constructive Approximation, (1993)
[4]  
Gadzhiev A.D., Theorems of the type of P.P. Korovkin type theorems, Mat. Zametki, 20, 5, pp. 781-786, (1976)
[5]  
Gasper G., Rahman M., Basic Hypergeometrik Series, Encyclopedia of Mathematics and Its Applications, 35, (1990)
[6]  
Gupta V., A note on modified Baskakov type operators, Approx. Theory Appl., 10, 3, pp. 74-78, (1994)
[7]  
Gupta V., Some approximation properties on q-Durrmeyer operators, Appl. Math. Comput., 197, 1, pp. 172-178, (2008)
[8]  
Gupta V., A note on q Baskakov-Szasz operators, Lobachevskii J. Math., 31, 4, pp. 359-366, (2010)
[9]  
Gupta V., On certain type Durrmeyer type q Baskakov operators, Ann. Univ. Ferrara, 56, 2, pp. 295-303, (2010)
[10]  
Gupta V., Aral A., Convergence of the q analogue of Szasz-Beta operators, Appl. Math. Comput., 216, pp. 374-380, (2010)