Pareto Minimizing Total Completion Time and Maximum Cost with Positional Due Indices

被引:9
作者
Gao Y. [1 ]
Yuan J.-J. [1 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University, Zhengzhou
基金
中国国家自然科学基金;
关键词
Maximum cost; Pareto optimization; Positional due indices; Scheduling;
D O I
10.1007/s40305-015-0083-1
中图分类号
学科分类号
摘要
In this paper, we study the Pareto optimization scheduling problem on a single machine with positional due indices of jobs to minimize the total completion time and a maximum cost. For this problem, we give two O(n4)-time algorithms. © 2015, Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:381 / 387
页数:6
相关论文
共 7 条
  • [1] Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., Optimization and approximation in deterministic sequencing and scheduling: A survey, Ann. Discret. Math., 5, pp. 287-326, (1979)
  • [2] Van Wassenhove L.N., Gelders F., Solving a bicriterion scheduling problem, Eur. J. Oper. Res., 4, pp. 42-48, (1980)
  • [3] John T.C., Tradeoff solutions in single machine production scheduling for minimizing flow time and maximum penalty, Comput. Oper. Res., 16, pp. 471-479, (1989)
  • [4] Hoogeveen J.A., van de Velde S.L., Minimizing total completion time and maximum cost simultaneously is solvable in polynomial time, Oper. Res. Lett., 17, pp. 205-208, (1995)
  • [5] Gao Y., Yuan J.J., A note on Pareto minimizing total completion time and maximum cost, Oper. Res. Lett., 43, pp. 80-82, (2014)
  • [6] Lawler E.L., Optimal sequencing of a single machine subject to precedence constraints, Manag. Sci., 19, pp. 544-546, (1973)
  • [7] Hoogeveen H., Multicriteria scheduling, Eur. J. Oper. Res., 167, pp. 592-623, (2005)