Well-Posedness for the Navier-Stokes Equations with Datum in the Sobolev Spaces

被引:3
作者
Khai D.Q. [1 ]
机构
[1] Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10307, Hanoi
关键词
Critical Sobolev and Besov spaces; Existence and uniqueness of local and global mild solutions; Navier-Stokes equations;
D O I
10.1007/s40306-016-0192-x
中图分类号
学科分类号
摘要
In this paper, we study local well-posedness for the Navier-Stokes equations with arbitrary initial data in homogeneous Sobolev spaces Ḣps(ℝd) for d≥2,p>d2, and dp−1≤s<d2p. The obtained result improves the known ones for p > d and s = 0 (see [4, 6]). In the case of critical indexes s=dp−1, we prove global well-posedness for Navier-Stokes equations when the norm of the initial value is small enough. This result is a generalization of the one in [5] in which p = d and s = 0. © 2016, Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore.
引用
收藏
页码:431 / 443
页数:12
相关论文
共 25 条
[1]  
Bourgain J., Pavloviec N., Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255, 9, pp. 2233-2247, (2008)
[2]  
Ce qu’il faut savoir sur les espaces de Besov Prépublication de l’Universitéde Paris 7
[3]  
Bourdaud G., Réalisation des espaces de Besov homogènes, Ark. Mat., 26, 1, pp. 41-54, (1988)
[4]  
Cannone M., Ondelettes, Paraproduits et Navier-Stokes, (1995)
[5]  
Cannone M., A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13, 3, pp. 515-541, (1997)
[6]  
Cannone M., Meyer Y., Littlewood-Paley decomposition and the Navier-Stokes equations, Methods Appl. Anal., 2, pp. 307-319, (1995)
[7]  
Chemin J.M., Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., 23, pp. 20-28, (1992)
[8]  
Fabes E., Jones B., Riviere N.N., The initial value problem for the Navier-Stokes equations with data in Lp, Arch. Rat. Mech. Anal., 45, pp. 222-240, (1972)
[9]  
Fujita H., Kato T., On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal., 16, pp. 269-315, (1964)
[10]  
Giga Y., Solutions of semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equ., 62, pp. 186-212, (1986)