\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} instanton effective action in Ω-background and D3/D(−1)-brane system in R-R background

被引:0
作者
Katsushi Ito
Hiroaki Nakajima
Takuya Saka
Shin Sasaki
机构
[1] Tokyo Institute of Technology,Department of Physics
[2] Korea Institute for Advanced Study,School of Physics
[3] Kyungpook National University,Department of Physics
关键词
Supersymmetric gauge theory; Solitons Monopoles and Instantons; D-branes; Nonperturbative Effects;
D O I
10.1007/JHEP11(2010)093
中图分类号
学科分类号
摘要
We study the relation between the ADHM construction of instantons in the Ω-background and the fractional D3/D(−1)-branes at the orbifold singularity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{C} \times {{{{\mathbb{C}^2}}} \left/ {{{\mathbb{Z}_2}}} \right.} $\end{document} in Ramond-Ramond (R-R) 3-form field strength background. We calculate disk amplitudes of open strings connecting the D3/D(−1)-branes in certain R-R background to obtain the D(−1)-brane effective action deformed by the R-R background. We show that the deformed D(−1)-brane effective action agrees with the instanton effective action in the Ω-background.
引用
收藏
相关论文
共 50 条
[21]   Stringy instanton effects in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} gauge theories [J].
Hossein Ghorbani ;
Daniele Musso ;
Alberto Lerda .
Journal of High Energy Physics, 2011 (3)
[22]   New \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} =1 dualities [J].
Abhijit Gadde ;
Kazunobu Maruyoshi ;
Yuji Tachikawa ;
Wenbin Yan .
Journal of High Energy Physics, 2013 (6)
[24]   A path integral realization of joint JT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ J\overline{T} $$\end{document}, TJ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{J} $$\end{document} and TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} flows [J].
Jeremías Aguilera-Damia ;
Victor I. Giraldo-Rivera ;
Edward A. Mazenc ;
Ignacio Salazar Landea ;
Ronak M Soni .
Journal of High Energy Physics, 2020 (7)
[25]   N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} =1 Deformations and RG flows of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} =2 SCFTs, part II: non-principal deformations [J].
Prarit Agarwal ;
Kazunobu Maruyoshi ;
Jaewon Song .
Journal of High Energy Physics, 2016 (12)
[26]   N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 conformal dualities [J].
Shlomo S. Razamat ;
Gabi Zafrir .
Journal of High Energy Physics, 2019 (9)
[27]   4d N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} from 6d N=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,0\right) $$\end{document} on a torus with fluxes [J].
Ibrahima Bah ;
Amihay Hanany ;
Kazunobu Maruyoshi ;
Shlomo S. Razamat ;
Yuji Tachikawa ;
Gabi Zafrir .
Journal of High Energy Physics, 2017 (6)