Design, Simulation and Experiment for a Vortex-Induced Vibration Energy Harvester for Low-Velocity Water Flow

被引:0
|
作者
Dongxing Cao
Xiangdong Ding
Xiangying Guo
Minghui Yao
机构
[1] Beijing University of Technology,College of Mechanical Engineering
[2] Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures,School of Artificial Intelligence
[3] Tianjin Polytechnic University,undefined
关键词
Energy harvesting; Low velocity flow; Vortex-induced vibration; Variable-width piezoelectric beam; Magnetic force enhancement;
D O I
暂无
中图分类号
学科分类号
摘要
Piezoelectric vibration energy harvesting has attracted considerable attention because of its prospects in self-powered electronic applications. There are a many low-velocity waters in nature, such as rivers, seas and oceans, which contain abundant hydrokinetic energy. In this paper, an optimal geometric piezoelectric beam combining magnetic excitation is identified and applied to a vortex-induced vibration energy harvester (ViVEH) for low velocity water flow, which is composed of a continuous variable-width piezoelectric beam carrying a cylindrical bluff body. The finite element simulation and experiment are first carried out to study the harvesting characteristics of the designed variable-width beam ViVEH without considering the magnetic excitation. The influence of the width-ratio and flow velocity on the harvesting voltage is studied in detail. The optimal structure, a ViVEH equipped with triangular piezoelectric beam, is then obtained by the superior energy harvesting performance for low velocity water flow. From the experimental results, at a flow velocity of 0.6 m/s, the highest root mean square (RMS) voltage and RMS voltage per unit area are 19.9 V and 0.07 V/mm2, respectively. Furthermore, magnetic excitation is introduced to improve the scavenging performance of the optimal triangular beam ViVEH, different polarity arrangements are compared, and the optimal case, the arrangement of horizontal repulsion and vertical attraction (HR-VA), is obtained. This case can scavenge the highest power of 173 μW at a flow velocity of 0.5 m/s, which is increased by 127% compared to a conventional constant-width beam ViVEH with no magnetic excitation.
引用
收藏
页码:1239 / 1252
页数:13
相关论文
共 50 条
  • [31] Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester
    Su, Wei-Jiun
    Lin, Wun-Yu
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 173
  • [32] Numerical simulation of vortex-induced vibration of circular cylinder in oscillating flow
    Wang K.
    Chi Q.
    Zhang Y.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (01): : 96 - 104
  • [33] Research and Design of Broadband Underwater Flow Induced Vibration Energy Harvester Based on Karman Vortex
    Wang Hai
    Yang Chunlai
    Jin Biao
    Zheng Yanchang
    Yao Gang
    Wen Li
    2018 13TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS 2018), 2018, : 147 - 150
  • [34] Enhanced energy harvesting in low-velocity water by downstream interference for piezoelectric energy harvester
    Luo, Xingqi
    Zhao, Ang
    Sun, Weipeng
    Gao, Luhan
    Zhao, Daoli
    Hu, Shen
    Feng, Jianjun
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [35] Performance of a novel energy harvester for energy self-sufficiency as well as a vortex-induced vibration suppressor
    Zhu, Hongjun
    Zhao, Ying
    Hu, Jie
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 91
  • [36] A PIEZOELECTRIC ENERGY HARVESTER WITH VORTEX INDUCED VIBRATION
    Song, Ru-jun
    Shan, Xiao-biao
    Li, Jin-zhe
    Xie, Tao
    Sun, Qi-gang
    PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 322 - 325
  • [37] Vortex-induced vibration of a prism in internal flow
    Sanchez-Sanz, M.
    Velazquez, A.
    JOURNAL OF FLUID MECHANICS, 2009, 641 : 431 - 440
  • [38] Features of Vortex-Induced Vibration in Oscillatory Flow
    Fu, Shixiao
    Wang, Jungao
    Baarholm, Rolf
    Wu, Jie
    Larsen, C. M.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (01):
  • [39] A theoretical study of the coupling between a vortex-induced vibration cylindrical resonator and an electromagnetic energy harvester
    Xu-Xu, J.
    Barrero-Gil, A.
    Velazquez, A.
    SMART MATERIALS AND STRUCTURES, 2015, 24 (11)
  • [40] Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration
    Shan, Xiaobiao
    Sui, Guangdong
    Tian, Haigang
    Min, Zhaowei
    Feng, Ju
    Xie, Tao
    ENERGY, 2022, 241