Time–space fractional (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document} dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions

被引:0
作者
Chen Fu
Chang Na Lu
Hong Wei Yang
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and System Science
[3] Nanjing University of Information Science and Technology,Key Laboratory of Meteorological Disaster of Ministry of Education
关键词
Time–space fractional ; dimensional nonlinear Schrödinger equation; Envelope gravity waves; Conservation laws; method; 02.30.Jr; 43.75.Fg; 92.10.Hm;
D O I
10.1186/s13662-018-1512-3
中图分类号
学科分类号
摘要
In this article, nonlinear propagation of envelope gravity waves is studied in baroclinic atmosphere. The classical (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document} dimensional nonlinear Schrödinger (NLS) equation can be derived by using the multiple-scale, perturbation method. Further, via the semi-inverse method, the Euler–Lagrange equation and Agrawal’s method, the time–space fractional (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document} dimensional nonlinear Schrödinger (FNLS) equation is obtained to describe the envelope gravity waves. Furthermore, the conservation laws of time–space FNLS equation are discussed on the basis of Lie group analysis method. Finally, the exact solutions to the equation are given by employing the exp(−ϕ(ξ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exp(-\phi(\xi))$\end{document} method. The results demonstrate that the nonlinear effect caused by the fractional order leads to the change of the propagation characteristics of envelope gravity waves, the construction of fractional model has far-reaching significance for the research of nonlinear propagation of envelope gravity waves in actual atmospheric and ocean movement.
引用
收藏
相关论文
共 125 条
[21]  
Zhang Y.(2011)Adaptive dynamics for a non-autonomous Lotka–Volterra model with size-selective disturbance Comput. Math. Appl. 327 1369-undefined
[22]  
Huang F.(2018)Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay Appl. Math. Comput. 51 2761-undefined
[23]  
Tang X.(2016)Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions Appl. Math. Lett. 2016 714-undefined
[24]  
Lou S.Y.(2016)Uniqueness of solution for boundary value problems for fractional differential equations Electron. J. Differ. Equ. 2016 354-undefined
[25]  
Lu C.(2016)Monotone iterative method for fractional differential equations Bound. Value Probl. 74 531-undefined
[26]  
Liu P.(2017)Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions Appl. Math. Lett. 17 1907-undefined
[27]  
Gao X.N.(2014)On the uniqueness of solutions for a class of fractional differential equations Fract. Calc. Appl. Anal. 2014 834-undefined
[28]  
Kraenkel R.A.(2014)On the existence of blow up solutions for a class of fractional differential equations Abstr. Appl. Anal. 63 311-undefined
[29]  
Johnson R.S.(2012)Existence results and the monotone iterative technique for nonlinear fractional differential systems with coupled four-point boundary value problems Comput. Math. Appl. 215 791-undefined
[30]  
Abourabia A.M.A.(2009)Existence and multiplicity of positive solutions for singular fractional boundary value problems Appl. Math. Comput. 7 5253-undefined